Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Research on Vehicle Joint Radar Communication Resource Optimization Method Based on GNN-DRL

    Zeyu Chen1, Jian Sun2,*, Zhengda Huan1, Ziyi Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.071182 - 09 December 2025

    Abstract To address the issues of poor adaptability in resource allocation and low multi-agent cooperation efficiency in Joint Radar and Communication (JRC) systems under dynamic environments, an intelligent optimization framework integrating Deep Reinforcement Learning (DRL) and Graph Neural Network (GNN) is proposed. This framework models resource allocation as a Partially Observable Markov Game (POMG), designs a weighted reward function to balance radar and communication efficiencies, adopts the Multi-Agent Proximal Policy Optimization (MAPPO) framework, and integrates Graph Convolutional Networks (GCN) and Graph Sample and Aggregate (GraphSAGE) to optimize information interaction. Simulations show that, compared with traditional methods More >

  • Open Access

    ARTICLE

    Hybrid AI-IoT Framework with Digital Twin Integration for Predictive Urban Infrastructure Management in Smart Cities

    Abdullah Alourani1, Mehtab Alam2,*, Ashraf Ali3, Ihtiram Raza Khan4, Chandra Kanta Samal2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-32, 2026, DOI:10.32604/cmc.2025.070161 - 10 November 2025

    Abstract The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management. Earlier approaches have often advanced one dimension—such as Internet of Things (IoT)-based data acquisition, Artificial Intelligence (AI)-driven analytics, or digital twin visualization—without fully integrating these strands into a single operational loop. As a result, many existing solutions encounter bottlenecks in responsiveness, interoperability, and scalability, while also leaving concerns about data privacy unresolved. This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing, distributed intelligence, and simulation-based decision support. The… More >

  • Open Access

    ARTICLE

    Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images

    Binghong Zhang, Jialing Zhou, Xinye Zhou, Jia Zhao, Jinchun Zhu, Guangpeng Fan*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068309 - 10 November 2025

    Abstract Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring, urban planning, and disaster assessment. However, traditional methods exhibit deficiencies in detail recovery and noise suppression, particularly when processing complex landscapes (e.g., forests, farmlands), leading to artifacts and spectral distortions that limit practical utility. To address this, we propose an enhanced Super-Resolution Generative Adversarial Network (SRGAN) framework featuring three key innovations: (1) Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing; (2) A multi-loss joint optimization strategy… More >

  • Open Access

    ARTICLE

    Optimal Location, Sizing and Technology Selection of STATCOM for Power Loss Minimization and Voltage Profile Using Multiple Optimization Methods

    Hajer Hafaiedh1,2, Adel Mahjoub3, Yahia Saoudi4, Anouar Benamor2, Okba Taouali5,*, Kamel Zidi6, Wad Ghaban6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 571-596, 2025, DOI:10.32604/cmes.2025.071642 - 30 October 2025

    Abstract Several optimization methods, such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), are used to select the most suitable Static Synchronous Compensator (STATCOM) technology for the optimal operation of the power system, as well as to determine its optimal location and size to minimize power losses. An IEEE 14 bus system, integrating three wind turbines based on Squirrel Cage Induction Generators (SCIGs), is used to test the applicability of the proposed algorithms. The results demonstrate that these algorithms are capable of selecting the most appropriate technology while optimally sizing and locating the STATCOM to More >

  • Open Access

    ARTICLE

    Probabilistic Rock Slope Stability Assessment of Heterogeneous Pyroclastic Slopes Considering Collapse Using Monte Carlo Methodology

    Miguel A. Millán1,*, Rubén A. Galindo2, Fausto Molina-Gómez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2923-2941, 2025, DOI:10.32604/cmes.2025.069356 - 30 September 2025

    Abstract Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes, resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns. This complexity poses significant challenges for slope stability analysis, requiring the development of specialized techniques to address these issues. This research presents a numerical methodology that incorporates spatial variability, nonlinear material characterization, and probabilistic analysis using a Monte Carlo framework to address this issue. The heterogeneous structure is represented by randomly assigning different lithotypes across the slope, while maintaining predefined global proportions. This contrasts with the more common approach… More >

  • Open Access

    ARTICLE

    A Novel Multi-Objective Topology Optimization Method for Stiffness and Strength-Constrained Design Using the SIMP Approach

    Jianchang Hou1, Zhanpeng Jiang1, Fenghe Wu1, Hui Lian1, Zhaohua Wang2, Zijian Liu3, Weicheng Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1545-1572, 2025, DOI:10.32604/cmes.2025.068482 - 31 August 2025

    Abstract In this paper, a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints, utilizing the Solid Isotropic Material with Penalization approach. Element densities are regulated through sensitivity filtering to mitigate numerical instabilities associated with stress concentrations. A p-norm aggregation function is employed to globalize local stress constraints, and a normalization technique linearly weights strain energy and stress, transforming the multi-objective problem into a single-objective formulation. The sensitivity of the objective function with respect to design variables is rigorously derived. Three numerical examples are presented, comparing the optimized structures in terms More >

  • Open Access

    ARTICLE

    Research on Adaptive Reward Optimization Method for Robot Navigation in Complex Dynamic Environment

    Jie He, Dongmei Zhao, Tao Liu*, Qingfeng Zou, Jian’an Xie

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2733-2749, 2025, DOI:10.32604/cmc.2025.065205 - 03 July 2025

    Abstract Robot navigation in complex crowd service scenarios, such as medical logistics and commercial guidance, requires a dynamic balance between safety and efficiency, while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns. This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization, aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment. We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining… More >

  • Open Access

    ARTICLE

    Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem

    Jiye Zhou1, Yun-Fei Fu2, Kazem Ghabraie1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3233-3251, 2025, DOI:10.32604/cmes.2025.065935 - 30 June 2025

    Abstract Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits. However, when benchmarking these methods, researchers use known solutions to only a single form of benchmark problem. This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms. A greyness measure is implemented to evaluate how far a solution is from the desired binary form. The well-known Zhou-Rozvany (ZR) problem is selected as the benchmarking problem here, making use of available global solutions… More >

  • Open Access

    REVIEW

    Optimization-Based Approaches to Uncertainty Analysis of Structures Using Non-Probabilistic Modeling: A Review

    Yoshihiro Kanno1,*, Izuru Takewaki2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 115-152, 2025, DOI:10.32604/cmes.2025.061551 - 11 April 2025

    Abstract Response analysis of structures involving non-probabilistic uncertain parameters can be closely related to optimization. This paper provides a review on optimization-based methods for uncertainty analysis, with focusing attention on specific properties of adopted numerical optimization approaches. We collect and discuss the methods based on nonlinear programming, semidefinite programming, mixed-integer programming, mathematical programming with complementarity constraints, difference-of-convex programming, optimization methods using surrogate models and machine learning techniques, and metaheuristics. As a closely related topic, we also overview the methods for assessing structural robustness using non-probabilistic uncertainty modeling. We conclude the paper by drawing several remarks through More >

  • Open Access

    ARTICLE

    An Enhanced Task Migration Technique Based on Convolutional Neural Network in Machine Learning Framework

    Hamayun Khan1,*, Muhammad Atif Imtiaz2, Hira Siddique3, Muhammad Tausif Afzal Rana4, Arshad Ali5, Muhammad Zeeshan Baig6, Saif ur Rehman7, Yazed Alsaawy5

    Computer Systems Science and Engineering, Vol.49, pp. 317-331, 2025, DOI:10.32604/csse.2025.061118 - 19 March 2025

    Abstract The migration of tasks aided by machine learning (ML) predictions IN (DPM) is a system-level design technique that is used to reduce energy by enhancing the overall performance of the processor. In this paper, we address the issue of system-level higher task dissipation during the execution of parallel workloads with common deadlines by introducing a machine learning-based framework that includes task migration using energy-efficient earliest deadline first scheduling (EA-EDF). ML-based EA-EDF enhances the overall throughput and optimizes the energy to avoid delay and performance degradation in a multiprocessor system. The proposed system model allocates processors… More >

Displaying 1-10 on page 1 of 70. Per Page