Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (143)
  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025

    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    Predicting Concrete Strength Using Data Augmentation Coupled with Multiple Optimizers in Feedforward Neural Networks

    Sandeerah Choudhary1, Qaisar Abbas2, Tallha Akram3,*, Irshad Qureshi4, Mutlaq B. Aldajani2, Hammad Salahuddin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1755-1787, 2025, DOI:10.32604/cmes.2025.072200 - 26 November 2025

    Abstract The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete (RAC) as an eco-friendly alternative to conventional concrete. However, predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters. This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks (FFNN), Random Forest (RF), and XGBoost. A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:… More >

  • Open Access

    ARTICLE

    Harnessing TLBO-Enhanced Cheetah Optimizer for Optimal Feature Selection in Cancer Data

    Bibhuprasad Sahu1, Amrutanshu Panigrahi2, Abhilash Pati2, Ashis Kumar Pati3, Janmejaya Mishra4, Naim Ahmad5,*, Salman Arafath Mohammed6, Saurav Mallik7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1029-1054, 2025, DOI:10.32604/cmes.2025.069618 - 30 October 2025

    Abstract Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complex optimization problems. These basically find the solution space very efficiently, often without utilizing the gradient information, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimization algorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets. Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks by balancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitation ability, often converging prematurely or getting trapped in local optima, particularly when applied to… More >

  • Open Access

    ARTICLE

    Systematic Analysis of Latent Fingerprint Patterns through Fractionally Optimized CNN Model for Interpretable Multi-Output Identification

    Mubeen Sabir1, Zeshan Aslam Khan2,*, Muhammad Waqar2, Khizer Mehmood1, Muhammad Junaid Ali Asif Raja3, Naveed Ishtiaq Chaudhary4, Khalid Mehmood Cheema5, Muhammad Asif Zahoor Raja4, Muhammad Farhan Khan6, Syed Sohail Ahmed7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 807-855, 2025, DOI:10.32604/cmes.2025.068131 - 30 October 2025

    Abstract Fingerprint classification is a biometric method for crime prevention. For the successful completion of various tasks, such as official attendance, banking transactions, and membership requirements, fingerprint classification methods require improvement in terms of accuracy, speed, and the interpretability of non-linear demographic features. Researchers have introduced several CNN-based fingerprint classification models with improved accuracy, but these models often lack effective feature extraction mechanisms and complex multineural architectures. In addition, existing literature primarily focuses on gender classification rather than accurately, efficiently, and confidently classifying hands and fingers through the interpretability of prominent features. This research seeks to… More >

  • Open Access

    ARTICLE

    Leveraging Deep Learning for Precision-Aware Road Accident Detection

    Kunal Thakur1, Ashu Taneja1,*, Ali Alqahtani2, Nayef Alqahtani3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4827-4848, 2025, DOI:10.32604/cmc.2025.067901 - 23 October 2025

    Abstract Accident detection plays a critical role in improving traffic safety by enabling timely emergency response and reducing the impact of road incidents. The main challenge lies in achieving real-time, reliable and highly accurate detection across diverse Internet-of-vehicles (IoV) environments. To overcome this challenge, this paper leverages deep learning to automatically learn patterns from visual data to detect accidents with high accuracy. A visual classification model based on the ResNet-50 architecture is presented for distinguishing between accident and non-accident images. The model is trained and tested on a labeled dataset and achieves an overall accuracy of… More >

  • Open Access

    ARTICLE

    LOEV-APO-MLP: Latin Hypercube Opposition-Based Elite Variation Artificial Protozoa Optimizer for Multilayer Perceptron Training

    Zhiwei Ye1,2,3, Dingfeng Song1, Haitao Xie1,2,3,*, Jixin Zhang1,2, Wen Zhou1,2, Mengya Lei1,2, Xiao Zheng1,2, Jie Sun1, Jing Zhou1, Mengxuan Li1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5509-5530, 2025, DOI:10.32604/cmc.2025.067342 - 23 October 2025

    Abstract The Multilayer Perceptron (MLP) is a fundamental neural network model widely applied in various domains, particularly for lightweight image classification, speech recognition, and natural language processing tasks. Despite its widespread success, training MLPs often encounter significant challenges, including susceptibility to local optima, slow convergence rates, and high sensitivity to initial weight configurations. To address these issues, this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer (LOEV-APO), which enhances both global exploration and local exploitation simultaneously. LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling (LHS) with Opposition-Based Learning (OBL), thus… More >

  • Open Access

    ARTICLE

    Dung Beetle Optimization Algorithm Based on Bounded Reflection Optimization and Multi-Strategy Fusion for Multi-UAV Trajectory Planning

    Weicong Tan1,#, Qiwu Wu2,3,#,*, Lingzhi Jiang1, Tao Tong2, Yunchen Su2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3621-3652, 2025, DOI:10.32604/cmc.2025.068781 - 23 September 2025

    Abstract This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization and multi-strategy fusion (BFDBO), which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments. Initially, a collaborative planning cost function for the multi-UAV system is formulated, thereby converting the trajectory planning challenge into an optimization problem. Building on the foundational dung beetle optimization (DBO) algorithm, BFDBO incorporates three significant innovations: a boundary reflection mechanism, an adaptive mixed exploration strategy, and a dynamic multi-scale mutation strategy. These enhancements are intended to… More >

  • Open Access

    ARTICLE

    Narwhal Optimizer: A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems

    Raja Masadeh1, Omar Almomani2,*, Abdullah Zaqebah1, Shayma Masadeh3, Kholoud Alshqurat3, Ahmad Sharieh4, Nesreen Alsharman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3709-3737, 2025, DOI:10.32604/cmc.2025.066797 - 23 September 2025

    Abstract This research presents a novel nature-inspired metaheuristic optimization algorithm, called the Narwhale Optimization Algorithm (NWOA). The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals, “unicorns of the sea”, particularly the use of their distinctive spiral tusks, which play significant roles in hunting, searching prey, navigation, echolocation, and complex social interaction. Particularly, the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the… More >

  • Open Access

    ARTICLE

    Differential Evolution with Improved Equilibrium Optimizer for Combined Heat and Power Economic Dispatch Problem

    Yuanfei Wei1,2, Panpan Song3, Qifang Luo3,4,*, Yongquan Zhou1,2,3,4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1235-1265, 2025, DOI:10.32604/cmc.2025.066527 - 29 August 2025

    Abstract The combined heat and power economic dispatch (CHPED) problem is a highly intricate energy dispatch challenge that aims to minimize fuel costs while adhering to various constraints. This paper presents a hybrid differential evolution (DE) algorithm combined with an improved equilibrium optimizer (DE-IEO) specifically for the CHPED problem. The DE-IEO incorporates three enhancement strategies: a chaotic mechanism for initializing the population, an improved equilibrium pool strategy, and a quasi-opposite based learning mechanism. These strategies enhance the individual utilization capabilities of the equilibrium optimizer, while differential evolution boosts local exploitation and escape capabilities. The IEO enhances… More >

  • Open Access

    ARTICLE

    Unveiling CyberFortis: A Unified Security Framework for IIoT-SCADA Systems with SiamDQN-AE FusionNet and PopHydra Optimizer

    Kuncham Sreenivasa Rao1, Rajitha Kotoju2, B. Ramana Reddy3, Taher Al-Shehari4, Nasser A. Alsadhan5, Subhav Singh6,7,8, Shitharth Selvarajan9,10,11,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1899-1916, 2025, DOI:10.32604/cmc.2025.064728 - 29 August 2025

    Abstract Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things (SCADA-IIoT) systems against intruders has become essential since industrial control systems now oversee critical infrastructure, and cyber attackers more frequently target these systems. Due to their connection of physical assets with digital networks, SCADA-IIoT systems face substantial risks from multiple attack types, including Distributed Denial of Service (DDoS), spoofing, and more advanced intrusion methods. Previous research in this field faces challenges due to insufficient solutions, as current intrusion detection systems lack the necessary accuracy, scalability, and adaptability needed for IIoT environments. This paper introduces CyberFortis, a… More >

Displaying 1-10 on page 1 of 143. Per Page