Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (150)
  • Open Access

    ARTICLE

    MCPSFOA: Multi-Strategy Enhanced Crested Porcupine-Starfish Optimization Algorithm for Global Optimization and Engineering Design

    Hao Chen1, Tong Xu1, Yutian Huang2, Dabo Xin1,*, Changting Zhong1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.075792 - 29 January 2026

    Abstract Optimization problems are prevalent in various fields of science and engineering, with several real-world applications characterized by high dimensionality and complex search landscapes. Starfish optimization algorithm (SFOA) is a recently optimizer inspired by swarm intelligence, which is effective for numerical optimization, but it may encounter premature and local convergence for complex optimization problems. To address these challenges, this paper proposes the multi-strategy enhanced crested porcupine-starfish optimization algorithm (MCPSFOA). The core innovation of MCPSFOA lies in employing a hybrid strategy to improve SFOA, which integrates the exploratory mechanisms of SFOA with the diverse search capacity of… More >

  • Open Access

    ARTICLE

    Algorithmically Enhanced Data-Driven Prediction of Shear Strength for Concrete-Filled Steel Tubes

    Shengkang Zhang1, Yong Jin2,*, Soon Poh Yap1,*, Haoyun Fan1, Shiyuan Li3, Ahmed El-Shafie4, Zainah Ibrahim1, Amr El-Dieb5

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075351 - 29 January 2026

    Abstract Concrete-filled steel tubes (CFST) are widely utilized in civil engineering due to their superior load-bearing capacity, ductility, and seismic resistance. However, existing design codes, such as AISC and Eurocode 4, tend to be excessively conservative as they fail to account for the composite action between the steel tube and the concrete core. To address this limitation, this study proposes a hybrid model that integrates XGBoost with the Pied Kingfisher Optimizer (PKO), a nature-inspired algorithm, to enhance the accuracy of shear strength prediction for CFST columns. Additionally, quantile regression is employed to construct prediction intervals for… More >

  • Open Access

    ARTICLE

    Several Improved Models of the Mountain Gazelle Optimizer for Solving Optimization Problems

    Farhad Soleimanian Gharehchopogh*, Keyvan Fattahi Rishakan

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073808 - 29 January 2026

    Abstract Optimization algorithms are crucial for solving NP-hard problems in engineering and computational sciences. Metaheuristic algorithms, in particular, have proven highly effective in complex optimization scenarios characterized by high dimensionality and intricate variable relationships. The Mountain Gazelle Optimizer (MGO) is notably effective but struggles to balance local search refinement and global space exploration, often leading to premature convergence and entrapment in local optima. This paper presents the Improved MGO (IMGO), which integrates three synergistic enhancements: dynamic chaos mapping using piecewise chaotic sequences to boost exploration diversity; Opposition-Based Learning (OBL) with adaptive, diversity-driven activation to speed up… More >

  • Open Access

    REVIEW

    Grey Wolf Optimizer for Cluster-Based Routing in Wireless Sensor Networks: A Methodological Survey

    Mohammad Shokouhifar1,*, Fakhrosadat Fanian2, Mehdi Hosseinzadeh3,4,*, Aseel Smerat5,6, Kamal M. Othman7, Abdulfattah Noorwali7, Esam Y. O. Zafar7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.073789 - 29 January 2026

    Abstract Wireless Sensor Networks (WSNs) have become foundational in numerous real-world applications, ranging from environmental monitoring and industrial automation to healthcare systems and smart city development. As these networks continue to grow in scale and complexity, the need for energy-efficient, scalable, and robust communication protocols becomes more critical than ever. Metaheuristic algorithms have shown significant promise in addressing these challenges, offering flexible and effective solutions for optimizing WSN performance. Among them, the Grey Wolf Optimizer (GWO) algorithm has attracted growing attention due to its simplicity, fast convergence, and strong global search capabilities. Accordingly, this survey provides… More >

  • Open Access

    ARTICLE

    Concrete Strength Prediction Using Machine Learning and Somersaulting Spider Optimizer

    Marwa M. Eid1,2,*, Amel Ali Alhussan3, Ebrahim A. Mattar4, Nima Khodadadi5,*, El-Sayed M. El-Kenawy6,7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073555 - 29 January 2026

    Abstract Accurate prediction of concrete compressive strength is fundamental for optimizing mix designs, improving material utilization, and ensuring structural safety in modern construction. Traditional empirical methods often fail to capture the non-linear relationships among concrete constituents, especially with the growing use of supplementary cementitious materials and recycled aggregates. This study presents an integrated machine learning framework for concrete strength prediction, combining advanced regression models—namely CatBoost—with metaheuristic optimization algorithms, with a particular focus on the Somersaulting Spider Optimizer (SSO). A comprehensive dataset encompassing diverse mix proportions and material types was used to evaluate baseline machine learning models,… More >

  • Open Access

    ARTICLE

    Multi-Objective Enhanced Cheetah Optimizer for Joint Optimization of Computation Offloading and Task Scheduling in Fog Computing

    Ahmad Zia1, Nazia Azim2, Bekarystankyzy Akbayan3, Khalid J. Alzahrani4, Ateeq Ur Rehman5,*, Faheem Ullah Khan6, Nouf Al-Kahtani7, Hend Khalid Alkahtani8,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073818 - 12 January 2026

    Abstract The cloud-fog computing paradigm has emerged as a novel hybrid computing model that integrates computational resources at both fog nodes and cloud servers to address the challenges posed by dynamic and heterogeneous computing networks. Finding an optimal computational resource for task offloading and then executing efficiently is a critical issue to achieve a trade-off between energy consumption and transmission delay. In this network, the task processed at fog nodes reduces transmission delay. Still, it increases energy consumption, while routing tasks to the cloud server saves energy at the cost of higher communication delay. Moreover, the… More >

  • Open Access

    ARTICLE

    Advanced Meta-Heuristic Optimization for Accurate Photovoltaic Model Parameterization: A High-Accuracy Estimation Using Spider Wasp Optimization

    Sarah M. Alhammad1, Diaa Salama AbdElminaam2,3,*, Asmaa Rizk Ibrahim4, Ahmed Taha2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069263 - 12 January 2026

    Abstract Accurate parameter extraction of photovoltaic (PV) models plays a critical role in enabling precise performance prediction, optimal system sizing, and effective operational control under diverse environmental conditions. While a wide range of metaheuristic optimisation techniques have been applied to this problem, many existing methods are hindered by slow convergence rates, susceptibility to premature stagnation, and reduced accuracy when applied to complex multi-diode PV configurations. These limitations can lead to suboptimal modelling, reducing the efficiency of PV system design and operation. In this work, we propose an enhanced hybrid optimisation approach, the modified Spider Wasp Optimization… More >

  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025

    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    Predicting Concrete Strength Using Data Augmentation Coupled with Multiple Optimizers in Feedforward Neural Networks

    Sandeerah Choudhary1, Qaisar Abbas2, Tallha Akram3,*, Irshad Qureshi4, Mutlaq B. Aldajani2, Hammad Salahuddin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1755-1787, 2025, DOI:10.32604/cmes.2025.072200 - 26 November 2025

    Abstract The increasing demand for sustainable construction practices has led to growing interest in recycled aggregate concrete (RAC) as an eco-friendly alternative to conventional concrete. However, predicting its compressive strength remains a challenge due to the variability in recycled materials and mix design parameters. This study presents a robust machine learning framework for predicting the compressive strength of recycled aggregate concrete using feedforward neural networks (FFNN), Random Forest (RF), and XGBoost. A literature-derived dataset of 502 samples was enriched via interpolation-based data augmentation and modeled using five distinct optimization techniques within MATLAB’s Neural Net Fitting module:… More >

  • Open Access

    ARTICLE

    Harnessing TLBO-Enhanced Cheetah Optimizer for Optimal Feature Selection in Cancer Data

    Bibhuprasad Sahu1, Amrutanshu Panigrahi2, Abhilash Pati2, Ashis Kumar Pati3, Janmejaya Mishra4, Naim Ahmad5,*, Salman Arafath Mohammed6, Saurav Mallik7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1029-1054, 2025, DOI:10.32604/cmes.2025.069618 - 30 October 2025

    Abstract Metaheuristic optimization methods are iterative search processes that aim to efficiently solve complex optimization problems. These basically find the solution space very efficiently, often without utilizing the gradient information, and are inspired by the bio-inspired and socially motivated heuristics. Metaheuristic optimization algorithms are increasingly applied to complex feature selection problems in high-dimensional medical datasets. Among these, Teaching-Learning-Based optimization (TLBO) has proven effective for continuous design tasks by balancing exploration and exploitation phases. However, its binary version (BTLBO) suffers from limited exploitation ability, often converging prematurely or getting trapped in local optima, particularly when applied to… More >

Displaying 1-10 on page 1 of 150. Per Page