Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5,199)
  • Open Access

    ARTICLE

    Building Regulatory Confidence with Human-in-the-Loop AI in Paperless GMP Validation

    Manaliben Amin*

    Journal on Artificial Intelligence, Vol.8, pp. 1-18, 2026, DOI:10.32604/jai.2026.073895 - 07 January 2026

    Abstract Artificial intelligence (AI) is steadily making its way into pharmaceutical validation, where it promises faster documentation, smarter testing strategies, and better handling of deviations. These gains are attractive, but in a regulated environment speed is never enough. Regulators want assurance that every system is reliable, that decisions are explainable, and that human accountability remains central. This paper sets out a Human-in-the-Loop (HITL) AI approach for Computer System Validation (CSV) and Computer Software Assurance (CSA). It relies on explainable AI (XAI) tools but keeps structured human review in place, so automation can be used without creating… More >

  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 08 January 2026

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    PNP as a Metabolic and Prognostic Driver of Breast Cancer Aggressiveness: Insights from Patient Tissue and Cell Models

    Sarra B. Shakartalla1,2,3, Iman M. Talaat1,2,4,*, Nival Ali1, Shahenaz S. Salih1,5, Zainab M. Al Shareef1,2, Noura Alkhayyal6, Riyad Bendardaf2,7,*, Sameh S. M. Soliman1,8,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070808 - 30 December 2025

    Abstract Objectives: Breast cancer (BC) is the leading cause of cancer-related mortality in women, largely due to metastasis. This study aims to explore the role of purine nucleoside phosphorylase (PNP), a key enzyme in purine metabolism, in the aggressiveness and metastatic behavior of BC. Methods: A comprehensive analysis was performed using in silico transcriptomic data (n = 2509 patients), immunohistochemical profiling of BC tissues (n = 103), and validation through western blotting in multiple BC cell lines. Gene expression and survival analyses were conducted using Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and… More >

  • Open Access

    ARTICLE

    AGPAT3 Regulates Immune Microenvironment in Osteosarcoma via Lysophosphatidic Acid Metabolism

    Shenghui Su, Yu Zeng, Jiaxin Chen, Xieping Dong*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070558 - 30 December 2025

    Abstract Background: Recent studies have shown glycerolipid metabolism played an essential role in multiple tumors, however, its function in osteosarcoma is unclear. This study aimed to explore the role of glycerolipid metabolism in osteosarcoma. Methods: We conducted bioinformatics analysis using data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and single-cell RNA sequencing. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to identify the Glycerolipid metabolism-related genes associated with the clinical outcome of osteosarcoma. Tumor-associated macrophages (TAMs) and their interactions with immune cells were examined through single-cell analysis and co-culture experiments.… More >

  • Open Access

    ARTICLE

    miR-512-3p/RPS6KA2 Axis Regulates Cisplatin Resistance in Ovarian Cancer via Autophagy and Ferroptosis

    Jianfa Wu1,2,3, Huang Chen3, Sihong Wang1,2, Lei Peng1,2, Xiaoying Hu1,2, Zhou Liu1,2,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070542 - 30 December 2025

    Abstract Objectives: Ribosomal protein S6 kinase A2 (RPS6KA2) has been identified as a potential prognostic biomarker in several cancers, including breast cancer, glioblastoma, and prostate cancer. However, its functional significance in ovarian cancer is not well characterized. This study was designed to explore the therapeutic relevance of modulating RPS6KA2 in the context of ovarian cancer, particularly in relation to cisplatin resistance. Methods: The expression levels of RPS6KA2 and key regulators involved in autophagy and ferroptosis were assessed using quantitative reverse transcription-PCR, immunofluorescence staining, immunohistochemistry, and western blotting. Prognostic associations were conducted using the Kaplan-Meier Plotter database.… More >

  • Open Access

    ARTICLE

    Development of Patient-Derived Conditionally Reprogrammed 3D Breast Cancer Culture Models for Drug Sensitivity Evaluation

    Jing Cai1,#, Haoyun Zhu1,#, Weiling Guo1, Ting Huang1, Pangzhou Chen1,2, Wen Zhou1, Ziyun Guan1,3,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069902 - 30 December 2025

    Abstract Background: Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity. Current preclinical models, however, are inadequate for predicting individual patient responses towards different drugs. This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations. Methods: Tumor and adjacent tissues from female breast cancer patients were collected during surgery. Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models. The obtained patient-derived conditional reprogramming breast cancer (CRBC) cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres… More >

  • Open Access

    ARTICLE

    P2RX1 Influences the Prognosis of Ph+/Ph-Like ALL through Energy and Calcium Metabolism

    Xiangmei Ye1,2,3, Baoyi Yang4, Xin Zhang5, Luyuan Yang1, Likun Zhang5, Qin Ren1, Xiaobing Li1, Leiguang Feng1, Lanlan Wei3,6,7,*, Peng Song1, Yuqing Ye8, Xin Lian9, Yujuan Gao9, Haidi Tang1, Zhiyu Liu1

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068814 - 30 December 2025

    Abstract Objectives: Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia and Philadelphia-like B-cell acute lymphoblastic leukemia (Ph+/Ph-like ALL) constitute the majority of relapsed/refractory B-ALL (R/R B-ALL) cases, highlighting an urgent need to discover new therapeutic targets. This study aims to elucidate the mechanisms underlying poor prognosis in Ph+/Ph-like ALL through transcriptome sequencing and functional cytological assays, with the goal of informing new clinical treatment strategies. Results: Transcriptomic analysis of Ph+/Ph-like ALL patients revealed that low expression of P2X Purinoceptor 1 (P2RX1) was associated with unfavorable outcomes. Specifically, patients with poor prognosis and low P2RX1 expression exhibited downregulation of… More >

  • Open Access

    ARTICLE

    Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications

    K. Naga Venkata Siva1, Damodhar Reddy2, P. Krishna Murthy3, Kiran Kumar Pulamolu4, M. Dharani5, T. Venkatakrishnamoorthy6,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072982 - 27 December 2025

    Abstract Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components, particularly at elevated voltage levels. Addressing these shortcomings, this work presents a robust 15-level Packed U Cell (PUC) inverter topology designed for renewable energy and grid-connected applications. The proposed system integrates a sensor less proportional-resonant (PR) controller with an advanced carrier-based pulse width modulation scheme. This approach efficiently balances capacitor voltage, minimizes steady-state error, and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation. Additionally, More >

  • Open Access

    ARTICLE

    Graph-Based Unified Settlement Framework for Complex Electricity Markets: Data Integration and Automated Refund Clearing

    Xiaozhe Guo1, Suyan Long2, Ziyu Yue2, Yifan Wang2, Guanting Yin1, Yuyang Wang1, Zhaoyuan Wu1,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069820 - 27 December 2025

    Abstract The increasing complexity of China’s electricity market creates substantial challenges for settlement automation, data consistency, and operational scalability. Existing provincial settlement systems are fragmented, lack a unified data structure, and depend heavily on manual intervention to process high-frequency and retroactive transactions. To address these limitations, a graph-based unified settlement framework is proposed to enhance automation, flexibility, and adaptability in electricity market settlements. A flexible attribute-graph model is employed to represent heterogeneous multi-market data, enabling standardized integration, rapid querying, and seamless adaptation to evolving business requirements. An extensible operator library is designed to support configurable settlement… More >

  • Open Access

    ARTICLE

    Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm

    Binjiang Hu1,*, Yihua Zhu2, Liang Tu1,2, Zun Ma3, Xian Meng3, Kewei Xu3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069777 - 27 December 2025

    Abstract This paper proposes an equivalent modeling method for photovoltaic (PV) power stations via a particle swarm optimization (PSO) K-means clustering (KMC) algorithm with passive filter parameter clustering to address the complexities, simulation time cost and convergence problems of detailed PV power station models. First, the amplitude–frequency curves of different filter parameters are analyzed. Based on the results, a grouping parameter set for characterizing the external filter characteristics is established. These parameters are further defined as clustering parameters. A single PV inverter model is then established as a prerequisite foundation. The proposed equivalent method combines the… More >

Displaying 1-10 on page 1 of 5199. Per Page