Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (107)
  • Open Access

    ARTICLE

    Impact of COVID-19 Pandemic on Mental Health of Healthcare Workers–A Perception of Indian Hospital Administrators

    Anahita Ali*, Santosh Kumar

    International Journal of Mental Health Promotion, Vol.25, No.7, pp. 833-845, 2023, DOI:10.32604/ijmhp.2023.028799

    Abstract Since the coronavirus pandemic, many factors led to the change in the mental well-being of hospital administrators and their staff. The pandemic negatively impacted the availability and capability of health professionals to deliver essential services and meet rising demand. Therefore, this study aimed to understand the perspective of hospital administrators about issues and challenges that negatively impacted their staff’s mental health and hospital administrators’ coping response to mitigate those challenges and issues. An exploratory qualitative study was conducted with 17 hospital administrators (superintendents, deputy superintendents, nursing in charge and hospital in charge) working in a government district hospital of Rajasthan… More > Graphic Abstract

    Impact of COVID-19 Pandemic on Mental Health of Healthcare Workers–A Perception of Indian Hospital Administrators

  • Open Access

    ARTICLE

    Mindfulness Meditation for Oncology Patients: Adapting Practice in Times of Pandemic

    Méditation de pleine conscience pour les patients en oncologie : adapter la pratique en temps de pandémie

    A. Couillet, B. Mastroianni, J. Hailloud, M.-P. Le Bris, G. Chvetzoff

    Psycho-Oncologie, Vol.16, No.1, pp. 182-191, 2022, DOI:10.3166/pson-2022-0183

    Abstract Meditation workshops were offered to patients, and we observed their feasibility during their oncology care. They were adapted to Covid-19: one session face-to-face, the second by videoconference. Data were analyzed retrospectively. A mixed analysis was carried out: the quantitative part evaluated the participation in the workshops, the characteristics of the patients, and the impact of the workshops. The qualitative part focused on the appropriation of this tool by the patients. Concerning feasibility, 66.7% of patients completed the program without differences between face-to-face and videoconference groups. We find an improvement in mindfulness skills, a decrease in anxiety and physical pain, and… More >

  • Open Access

    ARTICLE

    The COVID-19 Pandemic: A Double Threat to Chinese Americans’ Mental Health

    Aoli Li1,#, Yan You1,2,#, Kunli Wu3, Huibin Shan4, Younglee Kim5, Qilian He1,*

    International Journal of Mental Health Promotion, Vol.25, No.6, pp. 783-797, 2023, DOI:10.32604/ijmhp.2023.026956

    Abstract Objective: To explore the double psychosocial threats of the COVID-19 pandemic, targeted behavior toward Chinese Americans, and the correlates to their mental health. Methods: A quantitative, cross-sectional, and descriptive design was utilized by using a purposive convenience sample of 301 Chinese Americans over the age of 18 residing in the United States. Online data collection was conducted through the social media platform WeChat from April 8–21, 2021. Descriptive statistical analysis was used for the participants’ demographic characteristics, Multidimensional Scale of Perceived Social Support (MSPSS), Double Threat Situations, COVID-19 Racial Discrimination, and General Anxiety Disorder-7 (GAD-7). Stepwise logistic regression was conducted… More > Graphic Abstract

    The COVID-19 Pandemic: A Double Threat to Chinese Americans’ Mental Health

  • Open Access

    ARTICLE

    Ensemble Deep Learning Framework for Situational Aspects-Based Annotation and Classification of International Student’s Tweets during COVID-19

    Shabir Hussain1, Muhammad Ayoub2, Yang Yu1, Junaid Abdul Wahid1, Akmal Khan3, Dietmar P. F. Moller4, Hou Weiyan1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5355-5377, 2023, DOI:10.32604/cmc.2023.036779

    Abstract As the COVID-19 pandemic swept the globe, social media platforms became an essential source of information and communication for many. International students, particularly, turned to Twitter to express their struggles and hardships during this difficult time. To better understand the sentiments and experiences of these international students, we developed the Situational Aspect-Based Annotation and Classification (SABAC) text mining framework. This framework uses a three-layer approach, combining baseline Deep Learning (DL) models with Machine Learning (ML) models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset. Using the proposed aspect2class annotation algorithm, we… More >

  • Open Access

    ARTICLE

    Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets

    Abdelwahed Motwakel1,*, Hala J. Alshahrani2, Abdulkhaleq Q. A. Hassan3, Khaled Tarmissi4, Amal S. Mehanna5, Ishfaq Yaseen1, Amgad Atta Abdelmageed1, Mohammad Mahzari6

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4767-4783, 2023, DOI:10.32604/cmc.2023.034840

    Abstract Applied linguistics is an interdisciplinary domain which identifies, investigates, and offers solutions to language-related real-life problems. The new coronavirus disease, otherwise known as Coronavirus disease (COVID-19), has severely affected the everyday life of people all over the world. Specifically, since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection, the country has initiated the appropriate preventive measures (like lockdown, physical separation, and masking) for combating this extremely transmittable disease. So, individuals spent more time on online social media platforms (i.e., Twitter, Facebook, Instagram, LinkedIn, and Reddit) and expressed their thoughts and feelings about coronavirus… More >

  • Open Access

    ARTICLE

    Extension of Goal-Directed Behavior Model for Post-Pandemic Korean Travel Intentions to Alternative Local Destinations: Perceived Risk and Knowledge

    Heesup Han1, Hong Ngoc Nguyen2, Hyerin Lee3, Sanghyeop Lee4,*

    International Journal of Mental Health Promotion, Vol.25, No.4, pp. 449-469, 2023, DOI:10.32604/ijmhp.2023.025379

    Abstract Since the outbreak of COVID-19, tourists have been increasingly concerned over various risks of international travel, while knowledge of the pandemic appears to vary significantly. In addition, as travel restrictions continue to impact adversely on international tourism, tourism efforts should be placed more on the domestic markets. Via structural equation modeling, this study unearthed different risk factors impacting Korean travelers’ choices of alternative local destinations in the post-pandemic era. In addition, this study extended the goal-directed behavior framework with the acquisition of perceived risk and knowledge of COVID-19, which was proven to hold a significantly superior explanatory power of tourists’… More >

  • Open Access

    ARTICLE

    Short-Term Mindfulness Intervention on Adolescents’ Negative Emotion under Global Pandemic

    Yue Yuan1,*, Aibao Zhou1,*, Tinghao Tang1, Manying Kang2, Haiyan Zhao1, Zhi Wang3

    International Journal of Mental Health Promotion, Vol.25, No.4, pp. 563-577, 2023, DOI:10.32604/ijmhp.2023.022161

    Abstract Objective: In this research, we tried to explore how short-term mindfulness (STM) intervention affects adolescents’ anxiety, depression, and negative and positive emotion during the COVID-19 pandemic. Design: 10 classes were divided into experiment groups (5 classes; n = 238) and control (5 classes; n = 244) randomly. Hospital Anxiety and Depression Scale (HADS) and Positive and Negative Affect Schedule (PANAS) were used to measure participants’ dependent variables. In the experiment group, we conducted STM practice interventions every morning in their first class from March to November 2020. No interventions were conducted in the control group. Methods: Paired-sample t-tests were used to identify if a… More >

  • Open Access

    ARTICLE

    The Impact of COVID-19 on the Mental-Emotional Wellbeing of Primary Healthcare Professionals: A Descriptive Correlational Study

    Regina Lai-Tong Lee1,2,*, Anson Chiu-Yan Tang3, Ho-Yu Cheng1, Connie Yuen-Yu Chong1, Wilson Wai-San Tam4, Wai-Tong Chien1, Sally Wai-Chi Chan5

    International Journal of Mental Health Promotion, Vol.25, No.3, pp. 327-342, 2023, DOI:10.32604/ijmhp.2022.026388

    Abstract The present study aimed to examine work environment related factors and frontline primary healthcare professionals’ mental-emotional wellbeing during the COVID-19 pandemic in school communities of Hong Kong. A total of 61 (20%) school health nurses (frontline primary healthcare professionals) participated in a cross-sectional online survey from March to June 2020. Outcomes of mental-emotional health were measured using the Mental Health Continuum-Short Form (14-item scale with three subscales related to emotional, social and psychological wellbeing); the Perceived Stress Scale (10-item scale with two subscales related to perceived helplessness and lack of self-efficacy; and the Coping Orientation to Problems Experienced Inventory (Brief… More >

  • Open Access

    ARTICLE

    Deep Learning Based Face Mask Detection in Religious Mass Gathering During COVID-19 Pandemic

    Abdullah S. AL-Malaise AL-Ghamdi1,2,3, Sultanah M. Alshammari3,4, Mahmoud Ragab3,5,6,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1863-1877, 2023, DOI:10.32604/csse.2023.035869

    Abstract Notwithstanding the religious intention of billions of devotees, the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most attendees ignored preventive measures, namely maintaining physical distance, practising hand hygiene, and wearing facemasks. Wearing a face mask in public areas protects people from spreading COVID-19. Artificial intelligence (AI) based on deep learning (DL) and machine learning (ML) could assist in fighting covid-19 in several ways. This study introduces a new deep learning-based Face Mask Detection in Religious Mass Gathering (DLFMD-RMG) technique during the… More >

  • Open Access

    ARTICLE

    Effect of Family Cohesion on Depression of Chinese College Students in the COVID-19 Pandemic: Chain Mediation Effect of Perceived Social Support and Intentional Self-Regulation

    Jingjing Wang1, Xiangli Guan1,*, Yue Zhang2, Yang Li1, Md Zahir Ahmed3, Mary C. Jobe4, Oli Ahmed5

    International Journal of Mental Health Promotion, Vol.25, No.2, pp. 223-235, 2023, DOI:10.32604/ijmhp.2022.025570

    Abstract Individuals’ perceptions, attitudes, and patterns of getting along with family members are important factors influencing Chinese people’s self-evaluation. The aim of this study was to investigate the effect of family cohesion on depression and the role of perceived social support and intentional self-regulation in this association. A hypothesized model of the association of family cohesion, perceived social support, intentional self-regulation, and depression was examined. A convenience sampling method was used to survey 1,180 college students in Yunnan Province using self-report. Data were collected using the Family Cohesion Scale, the Perceived Social Support Scale, the Intentional Self-Regulation Scale, and the Center… More >

Displaying 1-10 on page 1 of 107. Per Page  

Share Link