Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Fracture Modeling of Viscoelastic Behavior of Solid Propellants Based on Accelerated Phase-Field Model

    Yuan Mei1,2, Daokui Li1,2, Shiming Zhou1,2,*, Zhibin Shen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 153-187, 2025, DOI:10.32604/cmes.2025.070252 - 30 October 2025

    Abstract Viscoelastic solids, such as composite propellants, exhibit significant time and rate dependencies, and their fracture processes display high levels of nonlinearity. However, the correlation between crack propagation and viscoelastic energy dissipation in these materials remains unclear. Therefore, accurately modeling and understanding of their fracture behavior is crucial for relevant engineering applications. This study proposes a novel viscoelastic phase-field model. In the numerical implementation, the adopted adaptive time-stepping iterative strategy effectively accelerates the coupling iteration efficiency between the phase-field and the displacement field. Moreover, all unknown parameters in the model, including the form of the phase-field More >

  • Open Access

    ARTICLE

    Temperature Prediction of the Clamp-Conductor Coupling Zone in Transmission Lines

    Long Zhao1,*, Qi Zhao1, Siyuan Zhou1, Chenyang Fan2, Chao Ji1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1455-1475, 2025, DOI:10.32604/fhmt.2025.069512 - 31 October 2025

    Abstract The temperature prediction of the Clamp-conductor coupling zone plays a crucial role in ensuring the safe and stable operation of overhead transmission lines and optimizing the thermal stability margin of transmission lines. While existing research in this field has thoroughly explored temperature rise prediction, the focus has been relatively narrow, either targeting conductors exclusively or focusing solely on clamps, with little attention given to the temperature rise in the conductor-clamp coupling zone or the influence of clamp temperature on conductor temperature rise. Based on this, considering axial heat transfer between the clamp and the conductor,… More >

  • Open Access

    ARTICLE

    Adaptive Multi-Learning Cooperation Search Algorithm for Photovoltaic Model Parameter Identification

    Xu Chen1,*, Shuai Wang1, Kaixun He2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1779-1806, 2025, DOI:10.32604/cmc.2025.066543 - 29 August 2025

    Abstract Accurate and reliable photovoltaic (PV) modeling is crucial for the performance evaluation, control, and optimization of PV systems. However, existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency. To address these challenges, we propose an adaptive multi-learning cooperation search algorithm (AMLCSA) for efficient identification of unknown parameters in PV models. AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises. It enhances the original cooperation search algorithm in two key aspects: (i) an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights, allowing better individuals to More >

  • Open Access

    ARTICLE

    Collaborative State Estimation for Coupled Transmission and Distribution Systems Based on Clustering Analysis and Equivalent Measurement Modeling

    Hao Jiao1, Xinyu Liu2, Chen Wu1, Chunlei Xu1, Zhijun Zhou3, Ye Chen3, Guoqiang Sun2,*

    Energy Engineering, Vol.122, No.7, pp. 2977-2992, 2025, DOI:10.32604/ee.2025.064206 - 27 June 2025

    Abstract With the continuous expansion of the power system scale and the increasing complexity of operational mode, the interaction between transmission and distribution systems is becoming more and more significant, placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods, this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification. To resolve the scalability issue of coupled transmission and distribution power systems, clustering… More >

  • Open Access

    PROCEEDINGS

    Parameter Identification of Biphasic Hyperelastic Constitutive Model with Osmotic Pressure Based on VFM

    Ruike Shi1, Haitian Yang1, Yue Mei1, Yiqian He1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012458

    Abstract Soft biological tissues, like cartilage or arteries, are often modeled as biphasic, considering both solid matrix and interstitial fluid [1]. This biphasic behavior involves chemo-mechanical couplings that control interstitial fluid osmotic pressure [2]. Therefore, the research on the inverse problems of osmotic pressure in soft tissues is important. In this paper, the authors propose a virtual fields method (VFM) for identifying the constitutive model of solid-liquid biphasic hyperelasticity. This method constructs virtual fields based on finite elements (FE) to solve linearly independent virtual fields that can automatically satisfy constraint conditions of the solution of VFM.… More >

  • Open Access

    ARTICLE

    Improved Particle Swarm Optimization for Parameter Identification of Permanent Magnet Synchronous Motor

    Shuai Zhou1, Dazhi Wang1,*, Yongliang Ni2, Keling Song2, Yanming Li2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2187-2207, 2024, DOI:10.32604/cmc.2024.048859 - 15 May 2024

    Abstract In the process of identifying parameters for a permanent magnet synchronous motor, the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration, resulting in low parameter accuracy. This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function. This approach addresses the topic of particle swarm optimization in parameter identification from two perspectives. Firstly, the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness… More >

  • Open Access

    ARTICLE

    Parameters Identification for Extended Debye Model of XLPE Cables Based on Sparsity-Promoting Dynamic Mode Decomposition Method

    Weijun Wang1,*, Min Chen1, Hui Yin1, Yuan Li2

    Energy Engineering, Vol.120, No.10, pp. 2433-2448, 2023, DOI:10.32604/ee.2023.028620 - 28 September 2023

    Abstract To identify the parameters of the extended Debye model of XLPE cables, and therefore evaluate the insulation performance of the samples, the sparsity-promoting dynamic mode decomposition (SPDMD) method was introduced, as well the basics and processes of its application were explained. The amplitude vector based on polarization current was first calculated. Based on the non-zero elements of the vector, the number of branches and parameters including the coefficients and time constants of each branch of the extended Debye model were derived. Further research on parameter identification of XLPE cables at different aging stages based on… More >

  • Open Access

    ARTICLE

    STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data

    Shuai Zhang, Liguo Weng*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2635-2654, 2023, DOI:10.32604/cmes.2023.025405 - 09 March 2023

    Abstract Transmission line (TL) Parameter Identification (PI) method plays an essential role in the transmission system. The existing PI methods usually have two limitations: (1) These methods only model for single TL, and can not consider the topology connection of multiple branches for simultaneous identification. (2) Transient bad data is ignored by methods, and the random selection of terminal section data may cause the distortion of PI and have serious consequences. Therefore, a multi-task PI model considering multiple TLs’ spatial constraints and massive electrical section data is proposed in this paper. The Graph Attention Network module More > Graphic Abstract

    STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data

  • Open Access

    ARTICLE

    Double Update Intelligent Strategy for Permanent Magnet Synchronous Motor Parameter Identification

    Shuai Zhou1, Dazhi Wang1,*, Mingtian Du2, Ye Li1, Shuo Cao3

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3391-3404, 2023, DOI:10.32604/cmc.2023.033397 - 31 October 2022

    Abstract The parameters of permanent magnet synchronous motor (PMSM) affect the performance of vector control servo system. Because of the complexity of nonlinear model of PMSM, it is very difficult to identify the parameters of PMSM. Aiming at the problems of large amount of data calculation, low identification accuracy and poor robustness in the process of multi parameter identification of permanent magnet synchronous motor, this paper proposes a weighted differential evolutionary particle swarm optimization algorithm based on double update strategy. By introducing adaptive judgment factor to control the proportion of weighted difference evolution (WDE) algorithm and… More >

  • Open Access

    ARTICLE

    Robot Zero-Moment Control Algorithm Based on Parameter Identification of Low-Speed Dynamic Balance

    Saixuan Chen1, Jie Yang1,*, Guohua Cui1, Fuzhou Niu2, Baiqiang Yao1, Yu Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2021-2039, 2023, DOI:10.32604/cmes.2022.022669 - 20 September 2022

    Abstract This paper proposes a zero-moment control torque compensation technique. After compensating the gravity and friction of the robot, it must overcome a small inertial force to move in compliance with the external force. The principle of torque balance was used to realise the zero-moment dragging and teaching function of the lightweight collaborative robot. The robot parameter identification based on the least square method was used to accurately identify the robot torque sensitivity and friction parameters. When the robot joint rotates at a low speed, it can approximately satisfy the torque balance equation. The experiment uses More >

Displaying 1-10 on page 1 of 24. Per Page