Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    Boosted Stacking Ensemble Machine Learning Method for Wafer Map Pattern Classification

    Jeonghoon Choi1, Dongjun Suh1,*, Marc-Oliver Otto2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2945-2966, 2023, DOI:10.32604/cmc.2023.033417

    Abstract Recently, machine learning-based technologies have been developed to automate the classification of wafer map defect patterns during semiconductor manufacturing. The existing approaches used in the wafer map pattern classification include directly learning the image through a convolution neural network and applying the ensemble method after extracting image features. This study aims to classify wafer map defects more effectively and derive robust algorithms even for datasets with insufficient defect patterns. First, the number of defects during the actual process may be limited. Therefore, insufficient data are generated using convolutional auto-encoder (CAE), and the expanded data are verified using the evaluation technique… More >

  • Open Access


    A Pattern Classification Model for Vowel Data Using Fuzzy Nearest Neighbor

    Monika Khandelwal1, Ranjeet Kumar Rout1, Saiyed Umer2, Kshira Sagar Sahoo3, NZ Jhanjhi4,*, Mohammad Shorfuzzaman5, Mehedi Masud5

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3587-3598, 2023, DOI:10.32604/iasc.2023.029785

    Abstract Classification of the patterns is a crucial structure of research and applications. Using fuzzy set theory, classifying the patterns has become of great interest because of its ability to understand the parameters. One of the problems observed in the fuzzification of an unknown pattern is that importance is given only to the known patterns but not to their features. In contrast, features of the patterns play an essential role when their respective patterns overlap. In this paper, an optimal fuzzy nearest neighbor model has been introduced in which a fuzzification process has been carried out for the unknown pattern using… More >

  • Open Access


    A New Quadtree-based Image Compression Technique using Pattern Matching Algorithm

    F. Keissarian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.4, pp. 137-144, 2009, DOI:10.3970/icces.2009.012.137

    Abstract In this paper, a new image compression technique is proposed in which variable block size technique is adopted, using quadtree decomposition, for coding images at low bit rates. The proposed algorithm decomposes the host image into blocks of variable sizes according to histogram analysis of the block residuals. Variable block sizes are then encoded at different rates based on their visual activity levels. To preserve edge integrity, a high-detail block is coded by a set of parameters associated with the pattern appearing inside the block. The use of these parameters at the receiver together with the quadtree code reduces the… More >

Displaying 1-10 on page 1 of 3. Per Page