Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    On the Liquid-Vapor Phase-Change Interface Conditions for Numerical Simulation of Violent Separated Flows

    Matthieu Ancellin1, *, Laurent Brosset2, Jean-Michel Ghidaglia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 359-381, 2020, DOI:10.32604/fdmp.2020.08642

    Abstract Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows. This review paper presents the modeling options that have been taken in order to obtain a model for violent separated flows with application to sloshing wave impacts. A relaxation model based on linear non-equilibrium thermodynamics has been chosen to compute the rate of phase change. The integration in the system of partial differential equations is done through a non-conservative advection term. For each of these modelling choices, some alternative models from the literature are presented and discussed. The theoretical framework for all… More >

  • Open Access

    ARTICLE

    A Controlled Conditions of Dynamic Cold Storage Using Nano fluid as PCM

    Bin Liu1, Zhaodan Yang1, Yahui Wang1, Rachid Bennacer1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 37-47, 2017, DOI:10.3970/fdmp.2017.013.037

    Abstract The dynamic thermal history of storage product system is related to the insulation and also to the inertia. Use a new porous media doped with nanofluid PCM to improve the system efficiency. The analysis of the porous sponge thickness with 8 mm, 16 mm and 20 mm, the integrated nanofluids with 0.1%, 0.15% and 0.2%, the mass of the PCM and the initial temperature of the stored product with -1°C, 4°C, 12°C is achieved in order to underline the advantages of the new saturated porous media (sponges) with the phase change material (PCM) /Al2O3-H2O nanofluid. The carrots are used as… More >

  • Open Access

    ABSTRACT

    Optimization of the Lattice Boltzmann Thermal Model for Simulation of Liquid-Vapor Phase Change

    Anjie Hu*, DongLiu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 160-160, 2019, DOI:10.32604/icces.2019.05466

    Abstract The pseudo-potential lattice Boltzmann (LB) phase change model has been widely applied in the simulation of liquid-vapor phase change problem. In the simulation, the LB method are applied in modeling of both two-phase flow and the energy transition. However, Li et al. [Physical Reviews E 96, 063303 (2017)] pointed out that the LB thermal equations cause errors when applied with pseudo-potential model. To eliminate these errors, they proposed an improved model by adding correction terms in the LB thermal equation. In their research, the treatment of these correction terms is quite complex and several finite-difference (FD) computations are adopted to… More >

  • Open Access

    ABSTRACT

    Numerical Modeling of Solid Movement in Phase Change Processes

    Igor Vušanović1,*, Vaughan R Voller2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 70-70, 2019, DOI:10.32604/icces.2019.05185

    Abstract In the modeling of liquid to solid phase change processes the movement of the solid phase (e.g., the grains that form when solidifying an alloy) can have a significant impact on the timing and pattern of the process. While a number of solidification models account for the movement of the solid phase, additional analysis is needed to fully understand the phenomena and guide in the selection of appropriate numerical technologies for its resolution. Towards this end, here, we introduce a reduced complexity model (RCM) to describe the solidification of an initially liquid binary material flowing between two parallel cooled plates… More >

  • Open Access

    ABSTRACT

    Computational Solutions of Fractional Phase Change Problems

    Vaughan R. Voller

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 69-69, 2019, DOI:10.32604/icces.2019.05082

    Abstract There has been current interest in studying diffusion processes that involve memory and non-locality. These phenomena can be modeled using fractional calculus tools. A fractional derivative in time, a convolution of previous states of the system, modeling memory and a fractional derivative in space, a convolution over aspace domain, modeling non-locality. In this work we consider how such treatments can be incorporated into models of phase change systems. In particular, we examine the consequences of replacing the time and space derivative in the classic one-phase Stefan melting problem with appropriate fractional derivatives. A number of alternative formations and associated computational… More >

  • Open Access

    ABSTRACT

    Implementation of Micro Encapsulated Phase Change Material (MEPCM) Into Fluid Based Heat Exchangers

    Robert Plant*, M. Ziad Saghir

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.1, pp. 18-18, 2019, DOI:10.32604/icces.2019.04980

    Abstract Fluids have been used to maintain operational temperatures for machinery for as long as machines have been developed. Over time different mediums have been explored, such as oils and waxes. These different mediums have had varying impacts on the overall system such as improving the heat capacity but at the cost and strain on the system of requiring more pumping power. Some mediums, while they provide an improvement can also damage to the system itself over time with unwanted interactions such corrosion. In this paper we will examine the implementation and suspension into the working fluid of Micro Encapsulated Phase… More >

  • Open Access

    ARTICLE

    Modeling and Simulation of Non-Newtonian Fluid Mold Filling Process with Phase Change

    F. Wang1, J.L. Li1, B.X. Yang1, N.A. Hill2

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.1, pp. 59-85, 2013, DOI:10.3970/cmes.2013.095.059

    Abstract A gas-liquid two-phase model for the simulation of a power-law fluid mold filling process with the consideration of phase change is proposed, in which the governing equations for the melt and air in the cavity, including the mass conservation, momentum conservation and energy conservation equations, are unified into one system of equation. A revised Enthalpy method, which can be used for both the melt and air in the mold cavity, is proposed to describe the phase change during the mold filling. Finite volume method on non-staggered grid is used to solve the system. The level set method is used to… More >

  • Open Access

    ARTICLE

    MLPG analysis of Nonlinear Heat Conduction in Irregular Domains

    Harishchandra Thakur1, K. M. Singh2, P. K. Sahoo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.68, No.2, pp. 117-150, 2010, DOI:10.3970/cmes.2010.068.117

    Abstract MLPG method is a meshfree method which removes the need of meshing of computational domain at any stage of numerical analysis. Current article extends MLPG method to nonlinear heat conduction in irregular domains including the problem of solid-liquid phase change. Moving least square (MLS) scheme is used to interpolate the trial function and a fourth order spline function is used as the test function. Method of direct interpolation is used to enforce essential boundary conditions. Nonlinearities in the problems are handled with an iterative predictor-corrector method. Time integration is performed using θ-method. MLPG method has also been extended to non-homogeneous… More >

  • Open Access

    ARTICLE

    The Chebyshev Tau Spectral Method for the Solution of the Linear Stability Equations for Rayleigh-Bénard Convection with Melting

    Rubén Avila1, Eduardo Ramos2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.1, pp. 73-92, 2009, DOI:10.3970/cmes.2009.051.073

    Abstract A Chebyshev Tau numerical algorithm is presented to solve the perturbation equations that result from the linear stability analysis of the convective motion of a fluid layer that appears when an unconfined solid melts in the presence of gravity. The system of equations that describe the phenomenon constitute an eigenvalue problem whose accurate solution requires a robust method. We solve the equations with our method and briefly describe examples of the results. In the limit where the liquid-solid interface recedes at zero velocity the Rayleigh-Bénard solution is recovered. We show that the critical Rayleigh number Rac and the critical wave… More >

  • Open Access

    ARTICLE

    Solution of Phase Change Problems by Collocation with Local Pressure Correction

    G. Kosec1, B. Šarler2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 191-216, 2009, DOI:10.3970/cmes.2009.047.191

    Abstract This paper explores an application of a novel mesh-free Local Radial Basis Function Collocation Method (LRBFCM) [Sarler and Vertnik (2006)] in solution of coupled heat transfer and fluid flow problems with solid-liquid phase change. The melting/freezing of a pure substance is solved in primitive variables on a fixed grid with convection suppression, proportional to the amount of the solid fraction. The involved temperature, velocity and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF's. The… More >

Displaying 41-50 on page 5 of 59. Per Page