Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Phishing Scam Detection on Ethereum via Mining Trading Information

    Yanyu Chen1, Zhangjie Fu1,2,*

    Journal of Cyber Security, Vol.4, No.3, pp. 189-200, 2022, DOI:10.32604/jcs.2022.038401 - 01 February 2023

    Abstract As a typical representative of web 2.0, Ethereum has significantly boosted the development of blockchain finance. However, due to the anonymity and financial attributes of Ethereum, the number of phishing scams is increasing rapidly and causing massive losses, which poses a serious threat to blockchain financial security. Phishing scam address identification enables to detect phishing scam addresses and alerts users to reduce losses. However, there are three primary challenges in phishing scam address recognition task: 1) the lack of publicly available large datasets of phishing scam address transactions; 2) the use of multi-order transaction information… More >

  • Open Access

    ARTICLE

    Hunger Search Optimization with Hybrid Deep Learning Enabled Phishing Detection and Classification Model

    Hadil Shaiba1, Jaber S. Alzahrani2, Majdy M. Eltahir3, Radwa Marzouk4, Heba Mohsen5, Manar Ahmed Hamza6,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6425-6441, 2022, DOI:10.32604/cmc.2022.031625 - 28 July 2022

    Abstract Phishing is one of the simplest ways in cybercrime to hack the reliable data of users such as passwords, account identifiers, bank details, etc. In general, these kinds of cyberattacks are made at users through phone calls, emails, or instant messages. The anti-phishing techniques, currently under use, are mainly based on source code features that need to scrape the webpage content. In third party services, these techniques check the classification procedure of phishing Uniform Resource Locators (URLs). Even though Machine Learning (ML) techniques have been lately utilized in the identification of phishing, they still need… More >

  • Open Access

    ARTICLE

    URL Phishing Detection Using Particle Swarm Optimization and Data Mining

    Saeed M. Alshahrani1, Nayyar Ahmed Khan1,*, Jameel Almalki2, Waleed Al Shehri2

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5625-5640, 2022, DOI:10.32604/cmc.2022.030982 - 28 July 2022

    Abstract The continuous destruction and frauds prevailing due to phishing URLs make it an indispensable area for research. Various techniques are adopted in the detection process, including neural networks, machine learning, or hybrid techniques. A novel detection model is proposed that uses data mining with the Particle Swarm Optimization technique (PSO) to increase and empower the method of detecting phishing URLs. Feature selection based on various techniques to identify the phishing candidates from the URL is conducted. In this approach, the features mined from the URL are extracted using data mining rules. The features are selected… More >

  • Open Access

    ARTICLE

    Impact Analysis of Resilience Against Malicious Code Attacks via Emails

    Chulwon Lee1, Kyungho Lee2,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4803-4816, 2022, DOI:10.32604/cmc.2022.025310 - 21 April 2022

    Abstract The damage caused by malicious software is increasing owing to the COVID-19 pandemic, such as ransomware attacks on information technology and operational technology systems based on corporate networks and social infrastructures and spear-phishing attacks on business or research institutes. Recently, several studies have been conducted to prevent further phishing emails in the workplace because malware attacks employ emails as the primary means of penetration. However, according to the latest research, there appears to be a limitation in blocking email spoofing through advanced blocking systems such as spam email filtering solutions and advanced persistent threat systems.… More >

  • Open Access

    ARTICLE

    Semantic Based Greedy Levy Gradient Boosting Algorithm for Phishing Detection

    R. Sakunthala Jenni*, S. Shankar

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 525-538, 2022, DOI:10.32604/csse.2022.019300 - 25 October 2021

    Abstract The detection of phishing and legitimate websites is considered a great challenge for web service providers because the users of such websites are indistinguishable. Phishing websites also create traffic in the entire network. Another phishing issue is the broadening malware of the entire network, thus highlighting the demand for their detection while massive datasets (i.e., big data) are processed. Despite the application of boosting mechanisms in phishing detection, these methods are prone to significant errors in their output, specifically due to the combination of all website features in the training state. The upcoming big data… More >

  • Open Access

    ARTICLE

    Phishing Websites Detection by Using Optimized Stacking Ensemble Model

    Zeyad Ghaleb Al-Mekhlafi1, Badiea Abdulkarem Mohammed1,2,*, Mohammed Al-Sarem3, Faisal Saeed3, Tawfik Al-Hadhrami4, Mohammad T. Alshammari1, Abdulrahman Alreshidi1, Talal Sarheed Alshammari1

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 109-125, 2022, DOI:10.32604/csse.2022.020414 - 08 October 2021

    Abstract Phishing attacks are security attacks that do not affect only individuals’ or organizations’ websites but may affect Internet of Things (IoT) devices and networks. IoT environment is an exposed environment for such attacks. Attackers may use thingbots software for the dispersal of hidden junk emails that are not noticed by users. Machine and deep learning and other methods were used to design detection methods for these attacks. However, there is still a need to enhance detection accuracy. Optimization of an ensemble classification method for phishing website (PW) detection is proposed in this study. A Genetic More >

  • Open Access

    ARTICLE

    Impact of Human Vulnerabilities on Cybersecurity

    Maher Alsharif1, Shailendra Mishra2,*, Mohammed AlShehri1

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 1153-1166, 2022, DOI:10.32604/csse.2022.019938 - 24 September 2021

    Abstract Today, security is a major challenge linked with computer network companies that cannot defend against cyber-attacks. Numerous vulnerable factors increase security risks and cyber-attacks, including viruses, the internet, communications, and hackers. Internets of Things (IoT) devices are more effective, and the number of devices connected to the internet is constantly increasing, and governments and businesses are also using these technologies to perform business activities effectively. However, the increasing uses of technologies also increase risks, such as password attacks, social engineering, and phishing attacks. Humans play a major role in the field of cybersecurity. It is… More >

  • Open Access

    ARTICLE

    A Smart Comparative Analysis for Secure Electronic Websites

    Sobia Wassan1, Chen Xi1,*, Nz Jhanjhi2, Hassan Raza3

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 187-199, 2021, DOI:10.32604/iasc.2021.015859 - 26 July 2021

    Abstract Online banking is an ideal method for conducting financial transactions such as e-commerce, e-banking, and e-payments. The growing popularity of online payment services and payroll systems, however, has opened new pathways for hackers to steal consumers’ information and money, a risk which poses significant danger to the users of e-commerce and e-banking websites. This study uses the selection method of the entire e-commerce and e-banking website dataset (Chi-Squared, Gini index, and main learning algorithm). The results of the analysis suggest the identification and comparison of machine learning and deep learning algorithm performance on binary category… More >

  • Open Access

    ARTICLE

    Feature Point Detection for Repacked Android Apps

    M. A. Rahim Khan*, Manoj Kumar Jain

    Intelligent Automation & Soft Computing, Vol.26, No.6, pp. 1359-1373, 2020, DOI:10.32604/iasc.2020.013849 - 24 December 2020

    Abstract Repacked mobile applications and obfuscation attacks constitute a significant threat to the Android technological ecosystem. A novel method using the Constant Key Point Selection and Limited Binary Pattern Feature (CKPS: LBP) extraction-based Hashing has been proposed to identify repacked Android applications in previous works. Although the approach was efficient in detecting the repacked Android apps, it was not suitable for detecting obfuscation attacks. Additionally, the time complexity needed improvement. This paper presents an optimization technique using Scalable Bivariant Feature Transformation extract optimum feature-points extraction, and the Harris method applied for optimized image hashing. The experiments More >

  • Open Access

    ARTICLE

    Phishing Detection with Image Retrieval Based on Improved Texton Correlation Descriptor

    Guoyuan Lin1,2,*, Bowen Liu1, Pengcheng Xiao3, Min Lei4, Wei Bi5,6

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 533-547, 2018, DOI:10.32604/cmc.2018.03720

    Abstract Anti-detection is becoming as an emerging challenge for anti-phishing. This paper solves the threats of anti-detection from the threshold setting condition. Enough webpages are considered to complicate threshold setting condition when the threshold is settled. According to the common visual behavior which is easily attracted by the salient region of webpages, image retrieval methods based on texton correlation descriptor (TCD) are improved to obtain enough webpages which have similarity in the salient region for the images of webpages. There are two steps for improving TCD which has advantage of recognizing the salient region of images: More >

Displaying 21-30 on page 3 of 30. Per Page