Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    A Novel Semi-Supervised Multi-View Picture Fuzzy Clustering Approach for Enhanced Satellite Image Segmentation

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Nguyen Tuan Huy4, Nguyen Long Giang1,*, Luong Thi Hong Lan4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071776 - 12 January 2026

    Abstract Satellite image segmentation plays a crucial role in remote sensing, supporting applications such as environmental monitoring, land use analysis, and disaster management. However, traditional segmentation methods often rely on large amounts of labeled data, which are costly and time-consuming to obtain, especially in large-scale or dynamic environments. To address this challenge, we propose the Semi-Supervised Multi-View Picture Fuzzy Clustering (SS-MPFC) algorithm, which improves segmentation accuracy and robustness, particularly in complex and uncertain remote sensing scenarios. SS-MPFC unifies three paradigms: semi-supervised learning, multi-view clustering, and picture fuzzy set theory. This integration allows the model to effectively… More >

  • Open Access

    ARTICLE

    An Improved Interval-Valued Picture Fuzzy TOPSIS Approach Based on New Divergence Measures for Risk Assessment

    Sijia Zhu1, Yuhan Li2, Prasanalakshmi Balaji3,*, Akila Thiyagarajan3, Rajanikanth Aluvalu4, Zhe Liu5,6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2099-2121, 2025, DOI:10.32604/cmes.2025.068734 - 31 August 2025

    Abstract While interval-valued picture fuzzy sets (IvPFSs) provide a powerful tool for modeling uncertainty and ambiguity in various fields, existing divergence measures for IvPFSs remain limited and often produce counterintuitive results. To address these shortcomings, this paper introduces two novel divergence measures for IvPFSs, inspired by the Jensen-Shannon divergence. The fundamental properties of the proposed measures—non-degeneracy, symmetry, triangular inequality, and boundedness—are rigorously proven. Comparative analyses with existing measures are conducted through specific cases and numerical examples, clearly demonstrating the advantages of our approach. Furthermore, we apply the new divergence measures to develop an enhanced interval-valued picture More >

  • Open Access

    ARTICLE

    Schweizer-Sklar T-Norm Operators for Picture Fuzzy Hypersoft Sets: Advancing Suistainable Technology in Social Healthy Environments

    Xingsi Xue1, Himanshu Dhumras2,*, Garima Thakur3, Rakesh Kumar Bajaj4, Varun Shukla5

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 583-606, 2025, DOI:10.32604/cmc.2025.066310 - 09 June 2025

    Abstract Ensuring a sustainable and eco-friendly environment is essential for promoting a healthy and balanced social life. However, decision-making in such contexts often involves handling vague, imprecise, and uncertain information. To address this challenge, this study presents a novel multi-criteria decision-making (MCDM) approach based on picture fuzzy hypersoft sets (PFHSS), integrating the flexibility of Schweizer-Sklar triangular norm-based aggregation operators. The proposed aggregation mechanisms—weighted average and weighted geometric operators—are formulated using newly defined operational laws under the PFHSS framework and are proven to satisfy essential mathematical properties, such as idempotency, monotonicity, and boundedness. The decision-making model systematically… More >

  • Open Access

    ARTICLE

    Multi-View Picture Fuzzy Clustering: A Novel Method for Partitioning Multi-View Relational Data

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Luong Thi Hong Lan4, Nguyen Tuan Huy4, Nguyen Long Giang1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5461-5485, 2025, DOI:10.32604/cmc.2025.065127 - 19 May 2025

    Abstract Multi-view clustering is a critical research area in computer science aimed at effectively extracting meaningful patterns from complex, high-dimensional data that single-view methods cannot capture. Traditional fuzzy clustering techniques, such as Fuzzy C-Means (FCM), face significant challenges in handling uncertainty and the dependencies between different views. To overcome these limitations, we introduce a new multi-view fuzzy clustering approach that integrates picture fuzzy sets with a dual-anchor graph method for multi-view data, aiming to enhance clustering accuracy and robustness, termed Multi-view Picture Fuzzy Clustering (MPFC). In particular, the picture fuzzy set theory extends the capability to… More >

  • Open Access

    ARTICLE

    An Integrated Bipolar Picture Fuzzy Decision Driven System to Scrutinize Food Waste Treatment Technology through Assorted Factor Analysis

    Navaneethakrishnan Suganthi Keerthana Devi1, Samayan Narayanamoorthy1, Thirumalai Nallasivan Parthasarathy1, Chakkarapani Sumathi Thilagasree2, Dragan Pamucar3,4,*, Vladimir Simic5,6, Hasan Dinçer7,8, Serhat Yüksel7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2665-2687, 2024, DOI:10.32604/cmes.2024.050954 - 08 July 2024

    Abstract Food Waste (FW) is a pressing environmental concern that affects every country globally. About one-third of the food that is produced ends up as waste, contributing to the carbon footprint. Hence, the FW must be properly treated to reduce environmental pollution. This study evaluates a few available Food Waste Treatment (FWT) technologies, such as anaerobic digestion, composting, landfill, and incineration, which are widely used. A Bipolar Picture Fuzzy Set (BPFS) is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model. A novel Criteria Importance Through… More >

  • Open Access

    ARTICLE

    Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering for Noisy Data

    Pham Huy Thong1,2,3, Florentin Smarandache4, Phung The Huan5, Tran Manh Tuan6, Tran Thi Ngan6,*, Vu Duc Thai5, Nguyen Long Giang2, Le Hoang Son3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1981-1997, 2023, DOI:10.32604/csse.2023.035692 - 09 February 2023

    Abstract Clustering is a crucial method for deciphering data structure and producing new information. Due to its significance in revealing fundamental connections between the human brain and events, it is essential to utilize clustering for cognitive research. Dealing with noisy data caused by inaccurate synthesis from several sources or misleading data production processes is one of the most intriguing clustering difficulties. Noisy data can lead to incorrect object recognition and inference. This research aims to innovate a novel clustering approach, named Picture-Neutrosophic Trusted Safe Semi-Supervised Fuzzy Clustering (PNTS3FCM), to solve the clustering problem with noisy data… More >

  • Open Access

    ARTICLE

    Multi-Criteria Decision Making Based on Bipolar Picture Fuzzy Operators and New Distance Measures

    Muhammad Riaz1, Harish Garg2, Hafiz Muhammad Athar Farid1, Ronnason Chinram3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.2, pp. 771-800, 2021, DOI:10.32604/cmes.2021.014174 - 19 April 2021

    Abstract This paper aims to introduce the novel concept of the bipolar picture fuzzy set (BPFS) as a hybrid structure of bipolar fuzzy set (BFS) and picture fuzzy set (PFS). BPFS is a new kind of fuzzy sets to deal with bipolarity (both positive and negative aspects) to each membership degree (belonging-ness), neutral membership (not decided), and non-membership degree (refusal). In this article, some basic properties of bipolar picture fuzzy sets (BPFSs) and their fundamental operations are introduced. The score function, accuracy function and certainty function are suggested to discuss the comparability of bipolar picture fuzzy More >

  • Open Access

    ARTICLE

    Spherical Linear Diophantine Fuzzy Sets with Modeling Uncertainties in MCDM

    Muhammad Riaz1, Masooma Raza Hashmi1, Dragan Pamucar2, Yuming Chu3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1125-1164, 2021, DOI:10.32604/cmes.2021.013699 - 19 February 2021

    Abstract The existing concepts of picture fuzzy sets (PFS), spherical fuzzy sets (SFSs), T-spherical fuzzy sets (T-SFSs) and neutrosophic sets (NSs) have numerous applications in decision-making problems, but they have various strict limitations for their satisfaction, dissatisfaction, abstain or refusal grades. To relax these strict constraints, we introduce the concept of spherical linear Diophantine fuzzy sets (SLDFSs) with the inclusion of reference or control parameters. A SLDFS with parameterizations process is very helpful for modeling uncertainties in the multi-criteria decision making (MCDM) process. SLDFSs can classify a physical system with the help of reference parameters. We… More >

Displaying 1-10 on page 1 of 8. Per Page