Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Behavior of Spikes in Spiking Neural Network (SNN) Model with Bernoulli for Plant Disease on Leaves

    Urfa Gul#, M. Junaid Gul#, Gyu Sang Choi, Chang-Hyeon Park*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3811-3834, 2025, DOI:10.32604/cmc.2025.063789 - 03 July 2025

    Abstract Spiking Neural Network (SNN) inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection, offering enhanced performance and efficiency in contrast to Artificial Neural Networks (ANN). Unlike conventional ANNs, which process static images without fully capturing the inherent temporal dynamics, our approach represents the first implementation of SNNs tailored explicitly for agricultural disease classification, integrating an encoding method to convert static RGB plant images into temporally encoded spike trains. Additionally, while Bernoulli trials and standard deep learning architectures like Convolutional Neural Networks (CNNs) and Fully Connected Neural Networks… More >

  • Open Access

    ARTICLE

    Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network

    Tajinder Kumar1, Sarbjit Kaur2, Purushottam Sharma3,*, Ankita Chhikara4, Xiaochun Cheng5,*, Sachin Lalar6, Vikram Verma7

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5219-5234, 2025, DOI:10.32604/cmc.2025.062010 - 19 May 2025

    Abstract During its growth stage, the plant is exposed to various diseases. Detection and early detection of crop diseases is a major challenge in the horticulture industry. Crop infections can harm total crop yield and reduce farmers’ income if not identified early. Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves. This is an excellent use case for Community Assessment and Treatment Services (CATS) due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.… More >

  • Open Access

    ARTICLE

    Multi-Stage Vision Transformer and Knowledge Graph Fusion for Enhanced Plant Disease Classification

    Wafaa H. Alwan1,*, Sabah M. Alturfi2

    Computer Systems Science and Engineering, Vol.49, pp. 419-434, 2025, DOI:10.32604/csse.2025.064195 - 30 April 2025

    Abstract Plant diseases pose a significant challenge to global agricultural productivity, necessitating efficient and precise diagnostic systems for early intervention and mitigation. In this study, we propose a novel hybrid framework that integrates EfficientNet-B8, Vision Transformer (ViT), and Knowledge Graph Fusion (KGF) to enhance plant disease classification across 38 distinct disease categories. The proposed framework leverages deep learning and semantic enrichment to improve classification accuracy and interpretability. EfficientNet-B8, a convolutional neural network (CNN) with optimized depth and width scaling, captures fine-grained spatial details in high-resolution plant images, aiding in the detection of subtle disease symptoms. In… More >

  • Open Access

    ARTICLE

    Plant Disease Detection Algorithm Based on Efficient Swin Transformer

    Wei Liu1,*, Ao Zhang

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3045-3068, 2025, DOI:10.32604/cmc.2024.058640 - 17 February 2025

    Abstract Plant diseases present a significant threat to global agricultural productivity, endangering both crop yields and quality. Traditional detection methods largely rely on manual inspection, a process that is not only labor-intensive and time-consuming but also subject to subjective biases and dependent on operators’ expertise. Recent advancements in Transformer-based architectures have shown substantial progress in image classification tasks, particularly excelling in global feature extraction. However, despite their strong performance, the high computational complexity and large parameter requirements of Transformer models limit their practical application in plant disease detection. To address these constraints, this study proposes an… More >

  • Open Access

    ARTICLE

    Performance of Deep Learning Techniques in Leaf Disease Detection

    Robertas Damasevicius1,*, Faheem Mahmood2, Yaseen Zaman3, Sobia Dastgeer2, Sajid Khan2

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1349-1366, 2024, DOI:10.32604/csse.2024.050359 - 13 September 2024

    Abstract Plant diseases must be identified as soon as possible since they have an impact on the growth of the corresponding species. Consequently, the identification of leaf diseases is essential in this field of agriculture. Diseases brought on by bacteria, viruses, and fungi are a significant factor in reduced crop yields. Numerous machine learning models have been applied in the identification of plant diseases, however, with the recent developments in deep learning, this field of study seems to hold huge potential for improved accuracy. This study presents an effective method that uses image processing and deep… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Trees Disease Recognition and Classification Using Hyperspectral Data

    Uzair Aslam Bhatti1,*, Sibghat Ullah Bazai2, Shumaila Hussain1, Shariqa Fakhar3, Chin Soon Ku4,*, Shah Marjan5, Por Lip Yee6, Liu Jing1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 681-697, 2023, DOI:10.32604/cmc.2023.037958 - 31 October 2023

    Abstract Crop diseases have a significant impact on plant growth and can lead to reduced yields. Traditional methods of disease detection rely on the expertise of plant protection experts, which can be subjective and dependent on individual experience and knowledge. To address this, the use of digital image recognition technology and deep learning algorithms has emerged as a promising approach for automating plant disease identification. In this paper, we propose a novel approach that utilizes a convolutional neural network (CNN) model in conjunction with Inception v3 to identify plant leaf diseases. The research focuses on developing… More >

  • Open Access

    ARTICLE

    Towards Intelligent Detection and Classification of Rice Plant Diseases Based on Leaf Image Dataset

    Fawad Ali Shah1, Habib Akbar1, Abid Ali2,3, Parveen Amna4, Maha Aljohani5, Eman A. Aldhahri6, Harun Jamil7,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1385-1413, 2023, DOI:10.32604/csse.2023.036144 - 28 July 2023

    Abstract The detection of rice leaf disease is significant because, as an agricultural and rice exporter country, Pakistan needs to advance in production and lower the risk of diseases. In this rapid globalization era, information technology has increased. A sensing system is mandatory to detect rice diseases using Artificial Intelligence (AI). It is being adopted in all medical and plant sciences fields to access and measure the accuracy of results and detection while lowering the risk of diseases. Deep Neural Network (DNN) is a novel technique that will help detect disease present on a rice leave… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Based Detection and Classification of Citrus Plant Diseases

    Shah Faisal1, Kashif Javed1, Sara Ali1, Areej Alasiry2, Mehrez Marzougui2, Muhammad Attique Khan3,*, Jae-Hyuk Cha4,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 895-914, 2023, DOI:10.32604/cmc.2023.039781 - 08 June 2023

    Abstract Citrus fruit crops are among the world’s most important agricultural products, but pests and diseases impact their cultivation, resulting in yield and quality losses. Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade, allowing for early disease detection and improving agricultural production. This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning (DL) model, which improved accuracy while decreasing computational complexity. The most recent transfer learning-based models were applied to the Citrus Plant Dataset More >

  • Open Access

    ARTICLE

    Towards Sustainable Agricultural Systems: A Lightweight Deep Learning Model for Plant Disease Detection

    Sana Parez1, Naqqash Dilshad2, Turki M. Alanazi3, Jong Weon Lee1,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 515-536, 2023, DOI:10.32604/csse.2023.037992 - 26 May 2023

    Abstract A country’s economy heavily depends on agricultural development. However, due to several plant diseases, crop growth rate and quality are highly suffered. Accurate identification of these diseases via a manual procedure is very challenging and time-consuming because of the deficiency of domain experts and low-contrast information. Therefore, the agricultural management system is searching for an automatic early disease detection technique. To this end, an efficient and lightweight Deep Learning (DL)-based framework (E-GreenNet) is proposed to overcome these problems and precisely classify the various diseases. In the end-to-end architecture, a MobileNetV3Small model is utilized as a… More >

  • Open Access

    ARTICLE

    Lightweight Method for Plant Disease Identification Using Deep Learning

    Jianbo Lu1,2,*, Ruxin Shi2, Jin Tong3, Wenqi Cheng4, Xiaoya Ma1,3, Xiaobin Liu2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 525-544, 2023, DOI:10.32604/iasc.2023.038287 - 29 April 2023

    Abstract In the deep learning approach for identifying plant diseases, the high complexity of the network model, the large number of parameters, and great computational effort make it challenging to deploy the model on terminal devices with limited computational resources. In this study, a lightweight method for plant diseases identification that is an improved version of the ShuffleNetV2 model is proposed. In the proposed model, the depthwise convolution in the basic module of ShuffleNetV2 is replaced with mixed depthwise convolution to capture crop pest images with different resolutions; the efficient channel attention module is added into… More >

Displaying 1-10 on page 1 of 28. Per Page