Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (137)
  • Open Access


    Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress

    Kaiyue Hong1,2, Yasmina Radani2, Waqas Ahmad2, Ping Li3, Yuming Luo1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 45-61, 2024, DOI:10.32604/phyton.2023.046389

    Abstract Carbon monoxide (CO) and nitric oxide (NO) are signal molecules that enhance plant adaptation to environmental stimuli. Auxin is an essential phytohormone for plant growth and development. CO and NO play crucial roles in modulating the plant’s response to iron deficiency. Iron deficiency leads to an increase in the activity of heme oxygenase (HO) and the subsequent generation of CO. Additionally, it alters the polar subcellular distribution of Pin-Formed 1 (PIN1) proteins, resulting in enhanced auxin transport. This alteration, in turn, leads to an increase in NO accumulation. Furthermore, iron deficiency enhances the activity of… More >

  • Open Access


    Low-molecular-weight fucoidan inhibits the proliferation of melanoma via Bcl-2 phosphorylation and PTEN/AKT pathway


    Oncology Research, Vol.32, No.2, pp. 273-282, 2024, DOI:10.32604/or.2023.044362

    Abstract Fucoidan, a sulfate polysaccharide obtained from brown seaweed, has various bioactive properties, including anti-inflammatory, anti-cancer, anti-viral, anti-oxidant, anti-coagulant, anti-thrombotic, anti-angiogenic, and anti-Helicobacter pylori properties. However, the effects of low-molecular-weight fucoidan (LMW-F) on melanoma cell lines and three dimensional (3D) cell culture models are not well understood. This study aimed to investigate the effects of LMW-F on A375 human melanoma cells and cryopreserved biospecimens derived from patients with advanced melanoma. Ultrasonic wave was used to fragment fucoidan derived from Fucus vesiculosus into smaller LMW-F. MTT and live/dead assays showed that LMW-F inhibited cell proliferation in both A375 cells More >

  • Open Access


    Retraction: Physiological Responses of Pea Plants to Salinity and Gibberellic Acid

    Houneida Attia1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3371-3371, 2023, DOI:10.32604/phyton.2023.048187

    Abstract This article has no abstract. More >

  • Open Access


    Application of Plant Growth-Promoting Bacteria as an Eco-Friendly Strategy for Mitigating the Harmful Effects of Abiotic Stress on Plants

    Ahmed Hassan Abdou1,*, Omar Abdullah Alkhateeb2, Hossam Eldin Hamed Mansour3, Hesham S. Ghazzawy4, Muayad Saud Albadrani5, Nadi Awad Al-harbi6, Wasimah B. Al-Shammari7, Khaled Abdelaal8,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3305-3321, 2023, DOI:10.32604/phyton.2023.044780

    Abstract Plant growth-promoting bacteria (PGPB) play an important role in improving agricultural production under several abiotic stress factors. PGPB can be used to increase crop growth and development through hormonal balance and increase nutrient uptake. The positive effect of PGPB may be due to its pivotal role in morphophysiological and biochemical characteristics like leaf number, leaf area, and stem length. Furthermore, relative water content, chlorophyll content, carotenoids, antioxidant enzymes, and plant hormones were improved with PGPB treatment. Crop yield and yield components were also increased with PGPB treatment in numerous crops. The anatomical structure of plant… More >

  • Open Access


    Development of micro/nanostructured‒based biomaterials with biomedical applications


    BIOCELL, Vol.47, No.8, pp. 1743-1755, 2023, DOI:10.32604/biocell.2023.027154

    Abstract Natural biomaterials are now frequently used to build biocarrier systems, which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect. Biomaterials and polymers are of great importance in the synthesis of nanomaterials. The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi, algae, bacteria, and medicinal plants. They are also biodegradable, compatible with neighborhoods, and non-toxic. Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds, matrices, composites, More >

  • Open Access


    A Techno-Economical Characterization of Solar PV Power Generation in Rwanda: The Role of Subsidies and Incentives

    Morris Kayitare1,2,*, Gace Athanase Dalson2,3, Al-Mas Sendegeyad4

    Energy Engineering, Vol.120, No.9, pp. 2155-2175, 2023, DOI:10.32604/ee.2023.028559

    Abstract Standalone Solar PV systems have been vital in the improvement of access to energy in many countries. However, given the large cost of solar PV plants’ components, in developing countries, there is a dear need for such components to be subsidised and incentivised for the consumers to afford the produced energy. Moreover, there is a need for optimal sizing of the solar PV plants taking into account the solar information, energy requirement for various activities, and economic conditions in the off-grid regions in Rwanda. This study aims to develop optimally sized solar PV plants suited… More > Graphic Abstract

    A Techno-Economical Characterization of Solar PV Power Generation in Rwanda: The Role of Subsidies and Incentives

  • Open Access


    Molecular Mechanism Underlying Plant Response to Cold Stress

    Yiwei Cao, Delight Hwarari, Yasmina Radani, Yuanlin Guan, Liming Yang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2665-2683, 2023, DOI:10.32604/phyton.2023.024929

    Abstract Low temperature stress is one of the most important factors limiting plant growth and geographical distribution. In order to adapt to low temperature, plants have evolved strategies to acquire cold tolerance, known as, cold acclimation. Current molecular and genomic studies have reported that annual herbaceous and perennial woody plants share similar cold acclimation mechanisms. However, woody perennials also require extra resilience to survive cold winters. Thus, trees have acquired complex dynamic processes to control the development of dormancy and cold resistance, ensuring successful tolerance during the coldest winter season. In this review, we systemically described More >

  • Open Access


    Breaking Barriers: Selenium and Silicon-Mediated Strategies for Mitigating Abiotic Stress in Plants

    Mojtaba Kordrostami1, Ali Akbar Ghasemi-Soloklui1, Mohammad Anwar Hossain2,*, Mohammad Golam Mostofa3,4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2713-2736, 2023, DOI:10.32604/phyton.2023.030372

    Abstract Numerous plant species, particularly those that can accumulate selenium (Se) and silicon (Si), benefit from these essential micronutrients. Se and Si accumulation in plants profoundly affects several biochemical reactions in cells. Understanding how plants react to Se/Si enrichment is crucial for ensuring adequate dietary Se/Si intake for humans and animals and increasing plant tolerance to environmental stressors. Several studies have shown that Se/Si-enriched plants are more resistant to salinity, drought, extreme temperatures, UV radiation, and excess metalloids. The interplay between Se/Si in plants is crucial for maintaining growth and development under normal conditions while providing… More >

  • Open Access


    Evaluation of Beta-Lactam Antibiotics on the Regeneration of Peanut Plants and Their Inhibitory Effect on Agrobacterium Growth

    Abraham Lamboro1,3,*, Songnan Yang1, Xueying Li1, Dan Yao2, Jun Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2489-2501, 2023, DOI:10.32604/phyton.2023.029492

    Abstract The effect of beta-lactam antibiotics on shoot induction and plantlet regeneration from cotyledonary nodes was tested using two peanut cultivars. The culture media contained 4 mg/L 6-benzylaminopurine (BAP) as the main growth regulator. Various concentrations (100–600 mg/L) of cefotaxime, carbenicillin, and timentin were applied in the culture media. In all the tested media, there were no significant differences in the shoot induction as compared to the control. However, little phytotoxic effect was observed at higher concentrations of these antibiotics in the shoot elongation media. Under shoot elongation medium, shoots turned brownish and partly died at… More >

  • Open Access


    The Mechanisms of Trichoderma Species to Reduce Drought and Salinity Stress in Plants

    Mohammad Reza Boorboori, Haiyang Zhang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2261-2281, 2023, DOI:10.32604/phyton.2023.029486

    Abstract Environmental stresses caused by climate change have severely affected agriculture in the present century; Salinity and drought have challenged most forecasts for increased agricultural production in the past few decades, therefore, different methods that reduce the effect of these stresses on plants have attracted scientists’ attention. The effect of beneficial soil microorganisms on soil health and increasing plants’ resistance to stresses is one of the solutions that researchers have paid attention to. This study investigated how Trichoderma species can be affected by the molecular and morphophysiological mechanisms of plants and improve their salt and drought resistance. More >

Displaying 11-20 on page 2 of 137. Per Page