Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    A Study on Classification and Detection of Small Moths Using CNN Model

    Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1987-1998, 2022, DOI:10.32604/cmc.2022.022554 - 03 November 2021

    Abstract Currently, there are many limitations to classify images of small objects. In addition, there are limitations such as error detection due to external factors, and there is also a disadvantage that it is difficult to accurately distinguish between various objects. This paper uses a convolutional neural network (CNN) algorithm to recognize and classify object images of very small moths and obtain precise data images. A convolution neural network algorithm is used for image data classification, and the classified image is transformed into image data to learn the topological structure of the image. To improve the More >

  • Open Access

    ARTICLE

    Local-Tetra-Patterns for Face Recognition Encoded on Spatial Pyramid Matching

    Khuram Nawaz Khayam1, Zahid Mehmood2,*, Hassan Nazeer Chaudhry3, Muhammad Usman Ashraf4, Usman Tariq5, Mohammed Nawaf Altouri6, Khalid Alsubhi7

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5039-5058, 2022, DOI:10.32604/cmc.2022.019975 - 11 October 2021

    Abstract Face recognition is a big challenge in the research field with a lot of problems like misalignment, illumination changes, pose variations, occlusion, and expressions. Providing a single solution to solve all these problems at a time is a challenging task. We have put some effort to provide a solution to solving all these issues by introducing a face recognition model based on local tetra patterns and spatial pyramid matching. The technique is based on a procedure where the input image is passed through an algorithm that extracts local features by using spatial pyramid matching and More >

  • Open Access

    ARTICLE

    Deep Rank-Based Average Pooling Network for Covid-19 Recognition

    Shui-Hua Wang1, Muhammad Attique Khan2, Vishnuvarthanan Govindaraj3, Steven L. Fernandes4, Ziquan Zhu5, Yu-Dong Zhang6,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2797-2813, 2022, DOI:10.32604/cmc.2022.020140 - 27 September 2021

    Abstract (Aim) To make a more accurate and precise COVID-19 diagnosis system, this study proposed a novel deep rank-based average pooling network (DRAPNet) model, i.e., deep rank-based average pooling network, for COVID-19 recognition. (Methods) 521 subjects yield 1164 slice images via the slice level selection method. All the 1164 slice images comprise four categories: COVID-19 positive; community-acquired pneumonia; second pulmonary tuberculosis; and healthy control. Our method firstly introduced an improved multiple-way data augmentation. Secondly, an n-conv rank-based average pooling module (NRAPM) was proposed in which rank-based pooling—particularly, rank-based average pooling (RAP)—was employed to avoid overfitting. Third, a… More >

  • Open Access

    ARTICLE

    VISPNN: VGG-Inspired Stochastic Pooling Neural Network

    Shui-Hua Wang1, Muhammad Attique Khan2, Yu-Dong Zhang3,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3081-3097, 2022, DOI:10.32604/cmc.2022.019447 - 27 September 2021

    Abstract Aim Alcoholism is a disease that a patient becomes dependent or addicted to alcohol. This paper aims to design a novel artificial intelligence model that can recognize alcoholism more accurately. Methods We propose the VGG-Inspired stochastic pooling neural network (VISPNN) model based on three components: (i) a VGG-inspired mainstay network, (ii) the stochastic pooling technique, which aims to outperform traditional max pooling and average pooling, and (iii) an improved 20-way data augmentation (Gaussian noise, salt-and-pepper noise, speckle noise, Poisson noise, horizontal shear, vertical shear, rotation, Gamma correction, random translation, and scaling on both raw image and… More >

  • Open Access

    ARTICLE

    A Multi-Category Brain Tumor Classification Method Bases on Improved ResNet50

    Linguo Li1,2, Shujing Li1,*, Jian Su3

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2355-2366, 2021, DOI:10.32604/cmc.2021.019409 - 21 July 2021

    Abstract Brain tumor is one of the most common tumors with high mortality. Early detection is of great significance for the treatment and rehabilitation of patients. The single channel convolution layer and pool layer of traditional convolutional neural network (CNN) structure can only accept limited local context information. And most of the current methods only focus on the classification of benign and malignant brain tumors, multi classification of brain tumors is not common. In response to these shortcomings, considering that convolution kernels of different sizes can extract more comprehensive features, we put forward the multi-size convolutional More >

  • Open Access

    ARTICLE

    Small Object Detection via Precise Region-Based Fully Convolutional Networks

    Dengyong Zhang1,2, Jiawei Hu1,2, Feng Li1,2,*, Xiangling Ding3, Arun Kumar Sangaiah4, Victor S. Sheng5

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1503-1517, 2021, DOI:10.32604/cmc.2021.017089 - 21 July 2021

    Abstract In the past several years, remarkable achievements have been made in the field of object detection. Although performance is generally improving, the accuracy of small object detection remains low compared with that of large object detection. In addition, localization misalignment issues are common for small objects, as seen in GoogLeNets and residual networks (ResNets). To address this problem, we propose an improved region-based fully convolutional network (R-FCN). The presented technique improves detection accuracy and eliminates localization misalignment by replacing position-sensitive region of interest (PS-RoI) pooling with position-sensitive precise region of interest (PS-Pr-RoI) pooling, which avoids More >

  • Open Access

    ARTICLE

    Multi-Object Detection of Chinese License Plate in Complex Scenes

    Dan Liu1,3, Yajuan Wu1, Yuxin He2, Lu Qin2, Bochuan Zheng2,3,*

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 145-156, 2021, DOI:10.32604/csse.2021.014646 - 23 December 2020

    Abstract Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background. The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects. To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes, a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research. The improvements include replacing the residual… More >

  • Open Access

    ARTICLE

    An Emotion Analysis Method Using Multi-Channel Convolution Neural Network in Social Networks

    Xinxin Lu1,*, Hong Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 281-297, 2020, DOI:10.32604/cmes.2020.010948 - 18 September 2020

    Abstract As an interdisciplinary comprehensive subject involving multidisciplinary knowledge, emotional analysis has become a hot topic in psychology, health medicine and computer science. It has a high comprehensive and practical application value. Emotion research based on the social network is a relatively new topic in the field of psychology and medical health research. The text emotion analysis of college students also has an important research significance for the emotional state of students at a certain time or a certain period, so as to understand their normal state, abnormal state and the reason of state change from… More >

  • Open Access

    ARTICLE

    Predicting Human Mobility via Long Short-Term Patterns

    Jianwei Chen, Jianbo Li*, Ying Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 847-864, 2020, DOI:10.32604/cmes.2020.010240 - 21 August 2020

    Abstract Predicting human mobility has great significance in Location based Social Network applications, while it is challenging due to the impact of historical mobility patterns and current trajectories. Among these challenges, historical patterns tend to be crucial in the prediction task. However, it is difficult to capture complex patterns from long historical trajectories. Motivated by recent success of Convolutional Neural Network (CNN)-based methods, we propose a Union ConvGRU (UCG) Net, which can capture long short-term patterns of historical trajectories and sequential impact of current trajectories. Specifically, we first incorporate historical trajectories into hidden states by a More >

  • Open Access

    ARTICLE

    Median Filtering Detection Based on Quaternion Convolutional Neural Network

    Jinwei Wang1, 2, 3, 4, Qiye Ni3, Yang Zhang3, Xiangyang Luo2, *, Yunqing Shi5, Jiangtao Zhai3, Sunil Kr Jha3

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 929-943, 2020, DOI:10.32604/cmc.2020.06569 - 23 July 2020

    Abstract Median filtering is a nonlinear signal processing technique and has an advantage in the field of image anti-forensics. Therefore, more attention has been paid to the forensics research of median filtering. In this paper, a median filtering forensics method based on quaternion convolutional neural network (QCNN) is proposed. The median filtering residuals (MFR) are used to preprocess the images. Then the output of MFR is expanded to four channels and used as the input of QCNN. In QCNN, quaternion convolution is designed that can better mix the information of different channels than traditional methods. The More >

Displaying 21-30 on page 3 of 33. Per Page