Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network for Infrared Small Target Detection

    Siqi Zhang, Shengda Pan*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4655-4676, 2025, DOI:10.32604/cmc.2025.064864 - 30 July 2025

    Abstract Infrared images typically exhibit diverse backgrounds, each potentially containing noise and target-like interference elements. In complex backgrounds, infrared small targets are prone to be submerged by background noise due to their low pixel proportion and limited available features, leading to detection failure. To address this problem, this paper proposes an Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network (ASCFNet) tailored for the detection of infrared weak and small targets. The network architecture first designs a Multidimensional Lightweight Pixel-level Attention Module (MLPA), which alleviates the issue of small-target feature suppression during deep network propagation by combining channel reshaping,… More >

  • Open Access

    ARTICLE

    VPM-Net: Person Re-ID Network Based on Visual Prompt Technology and Multi-Instance Negative Pooling

    Haitao Xie, Yuliang Chen, Yunjie Zeng, Lingyu Yan, Zhizhi Wang, Zhiwei Ye*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3389-3410, 2025, DOI:10.32604/cmc.2025.060783 - 16 April 2025

    Abstract With the rapid development of intelligent video surveillance technology, pedestrian re-identification has become increasingly important in multi-camera surveillance systems. This technology plays a critical role in enhancing public safety. However, traditional methods typically process images and text separately, applying upstream models directly to downstream tasks. This approach significantly increases the complexity of model training and computational costs. Furthermore, the common class imbalance in existing training datasets limits model performance improvement. To address these challenges, we propose an innovative framework named Person Re-ID Network Based on Visual Prompt Technology and Multi-Instance Negative Pooling (VPM-Net). First, we… More >

  • Open Access

    ARTICLE

    Performance vs. Complexity Comparative Analysis of Multimodal Bilinear Pooling Fusion Approaches for Deep Learning-Based Visual Arabic-Question Answering Systems

    Sarah M. Kamel1,*, Mai A. Fadel2, Lamiaa Elrefaei1,3, Shimaa I. Hassan1,4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 373-411, 2025, DOI:10.32604/cmes.2025.062837 - 11 April 2025

    Abstract Visual question answering (VQA) is a multimodal task, involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer. In this paper, we propose a VQA system intended to answer yes/no questions about real-world images, in Arabic. To support a robust VQA system, we work in two directions: (1) Using deep neural networks to semantically represent the given image and question in a fine-grained manner, namely ResNet-152 and Gated Recurrent Units (GRU). (2) Studying the role of the utilized multimodal bilinear… More >

  • Open Access

    ARTICLE

    A Pooling Method Developed for Use in Convolutional Neural Networks

    İsmail Akgül*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 751-770, 2024, DOI:10.32604/cmes.2024.052549 - 20 August 2024

    Abstract In convolutional neural networks, pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models. These methods reduce the computational amount of convolutional neural networks, making the neural network more efficient. Maximum pooling, average pooling, and minimum pooling methods are generally used in convolutional neural networks. However, these pooling methods are not suitable for all datasets used in neural network applications. In this study, a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural… More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805 - 20 June 2024

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism

    Zhijun Guo1, Yun Sun2,*, Ying Wang1, Chaoqi Fu3, Jilong Zhong4,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2375-2398, 2024, DOI:10.32604/cmc.2024.048112 - 15 May 2024

    Abstract Due to the time-varying topology and possible disturbances in a conflict environment, it is still challenging to maintain the mission performance of flying Ad hoc networks (FANET), which limits the application of Unmanned Aerial Vehicle (UAV) swarms in harsh environments. This paper proposes an intelligent framework to quickly recover the cooperative coverage mission by aggregating the historical spatio-temporal network with the attention mechanism. The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model. A spatio-temporal node pooling method is proposed to ensure all node location features… More >

  • Open Access

    ARTICLE

    NFHP-RN: A Method of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet

    Tao Yi1,3, Xingshu Chen1,2,*, Mingdong Yang3, Qindong Li1, Yi Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 929-955, 2024, DOI:10.32604/cmes.2024.048793 - 16 April 2024

    Abstract Due to the rapid evolution of Advanced Persistent Threats (APTs) attacks, the emergence of new and rare attack samples, and even those never seen before, make it challenging for traditional rule-based detection methods to extract universal rules for effective detection. With the progress in techniques such as transfer learning and meta-learning, few-shot network attack detection has progressed. However, challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning, difficulties in capturing rich information from original flow in the case… More >

  • Open Access

    ARTICLE

    A Smart Heart Disease Diagnostic System Using Deep Vanilla LSTM

    Maryam Bukhari1, Sadaf Yasmin1, Sheneela Naz2, Mehr Yahya Durrani1, Mubashir Javaid3, Jihoon Moon4, Seungmin Rho5,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1251-1279, 2023, DOI:10.32604/cmc.2023.040329 - 31 October 2023

    Abstract Effective smart healthcare frameworks contain novel and emerging solutions for remote disease diagnostics, which aid in the prevention of several diseases including heart-related abnormalities. In this context, regular monitoring of cardiac patients through smart healthcare systems based on Electrocardiogram (ECG) signals has the potential to save many lives. In existing studies, several heart disease diagnostic systems are proposed by employing different state-of-the-art methods, however, improving such methods is always an intriguing area of research. Hence, in this research, a smart healthcare system is proposed for the diagnosis of heart disease using ECG signals. The proposed… More >

  • Open Access

    ARTICLE

    Text Extraction with Optimal Bi-LSTM

    Bahera H. Nayef1,*, Siti Norul Huda Sheikh Abdullah2, Rossilawati Sulaiman2, Ashwaq Mukred Saeed3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3549-3567, 2023, DOI:10.32604/cmc.2023.039528 - 08 October 2023

    Abstract Text extraction from images using the traditional techniques of image collecting, and pattern recognition using machine learning consume time due to the amount of extracted features from the images. Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results. This study proposes using Dual Maxpooling and concatenating convolution Neural Networks (CNN) layers with the activation functions Relu and the Optimized Leaky Relu (OLRelu). The proposed method works by dividing the word image into slices that contain characters.… More >

  • Open Access

    ARTICLE

    PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform

    Wenbo Li, Qi Wang*, Shang Gao

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 921-938, 2023, DOI:10.32604/iasc.2023.038257 - 29 April 2023

    Abstract Infrared target detection models are more required than ever before to be deployed on embedded platforms, which requires models with less memory consumption and better real-time performance while considering accuracy. To address the above challenges, we propose a modified You Only Look Once (YOLO) algorithm PF-YOLOv4-Tiny. The algorithm incorporates spatial pyramidal pooling (SPP) and squeeze-and-excitation (SE) visual attention modules to enhance the target localization capability. The PANet-based-feature pyramid networks (P-FPN) are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy. To lighten the network, the standard convolutions other than the backbone More >

Displaying 1-10 on page 1 of 33. Per Page