Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Enhancing Energy Efficiency with a Dynamic Trust Measurement Scheme in Power Distribution Network

    Yilei Wang1, Xin Sun1, Guiping Zheng2,3, Ahmar Rashid4, Sami Ullah5, Hisham Alasmary6, Muhammad Waqas7,8,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3909-3927, 2024, DOI:10.32604/cmc.2024.047767

    Abstract The application of Intelligent Internet of Things (IIoT) in constructing distribution station areas strongly supports platform transformation, upgrade, and intelligent integration. The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer, with the former using intelligent fusion terminals for real-time data collection and processing. However, the influx of multiple low-voltage in the smart grid raises higher demands for the performance, energy efficiency, and response speed of the substation fusion terminals. Simultaneously, it brings significant security risks to the entire distribution substation, posing a major challenge to the smart grid. In response to these challenges, a… More >

  • Open Access

    ARTICLE

    Power Quality Improvement Using ANN Controller For Hybrid Power Distribution Systems

    Abdul Quawi1,*, Y. Mohamed Shuaib1, M. Manikandan2

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3469-3486, 2023, DOI:10.32604/iasc.2023.035001

    Abstract In this work, an Artificial Neural Network (ANN) based technique is suggested for classifying the faults which occur in hybrid power distribution systems. Power, which is generated by the solar and wind energy-based hybrid system, is given to the grid at the Point of Common Coupling (PCC). A boost converter along with perturb and observe (P&O) algorithm is utilized in this system to obtain a constant link voltage. In contrast, the link voltage of the wind energy conversion system (WECS) is retained with the assistance of a Proportional Integral (PI) controller. The grid synchronization is tainted with the assistance of… More >

  • Open Access

    ARTICLE

    Adaptive Nonlinear Sliding Mode Control for DC Power Distribution in Commercial Buildings

    R. Muthamil Arasi1,*, S. Padma2

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 997-1012, 2023, DOI:10.32604/iasc.2023.032645

    Abstract The developing populace and industrialization power demand prompted the requirement for power generation from elective sources. The desire for this pursuit is solid due to the ever-present common assets of petroleum derivatives and their predominant ecological issues. It is generally acknowledged that sustainable power sources are one of the best answers for the energy emergency. Among these, Photovoltaic (PV) sources have many benefits to bestow a very promising future. If integrated into the existing power distribution infrastructure, the solar source will be more successful, requiring efficient Direct Current (DC)-Alternating Current (AC) conversion. This paper mainly aims to improve controllers’ performance… More >

  • Open Access

    ARTICLE

    Hierarchical and Distributed Optimal Control Strategy for Power and Power Quality of Microgrid Based on Finite-Time Consistency

    Wenjun Wei1,2, Hao Liang1,*

    Energy Engineering, Vol.119, No.5, pp. 2065-2080, 2022, DOI:10.32604/ee.2022.020002

    Abstract Droop control is one of the main control strategies of islanded microgrid (MG), but the droop control cannot achieve reasonable power distribution of microgrid, resulting in frequency and voltage deviation from the rating value, which needs the upper control link to eliminate the deviation. However, at present, most layered control requires a centralized control center, which excessively relies on microgrid central controller (MGCC) and real-time communication among distributed generation (DG), which has certain limitations. To solve the above problems, this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm (MA-FTCA). Firstly,… More >

  • Open Access

    ARTICLE

    Quantifying Contribution of DER-Integrated EV Parking Lots to Reliability of Power Distribution Systems

    Bo Zeng*, Yixian Liu, Yangfan Luo

    Energy Engineering, Vol.118, No.6, pp. 1713-1728, 2021, DOI:10.32604/EE.2021.016678

    Abstract In the future smart cities, parking lots (PLs) can accommodate hundreds of electric vehicles (EVs) at the same time. This trend creates an opportunity for PLs to serve as a potential flexibility resource, considering growing penetration of EVs and integration of distributed energy resources DER (such as photovoltaic and energy storages). Given this background, this paper proposes a comprehensive evaluation framework to investigate the potential role of DER-integrated PLs (DPL) with the capability of vehicle-to-grid (V2G) in improving the reliability of the distribution network. For this aim, first, an overview for the distribution system with DPLs is provided. Then, a… More >

  • Open Access

    ARTICLE

    The Optimization Study about Fault Self-Healing Restoration of Power Distribution Network Based on Multi-Agent Technology

    Fuquan Huang1, Zijun Liu1, Tinghuang Wang1, Haitai Zhang2, *, Tony Yip3

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 865-878, 2020, DOI:10.32604/cmc.2020.010724

    Abstract In order to quickly and accurately locate the fault location of the distribution network and increase the stability of the distribution network, a fault recovery method based on multi-objective optimization algorithm is proposed. The optimization of the power distribution network fault system based on multiagent technology realizes fast recovery of multi-objective fault, solve the problem of network learning and parameter adjustment in the later stage of particle swarm optimization algorithm falling into the local extreme value dilemma, and realize the multi-dimensional nonlinear optimization of the main grid and the auxiliary grid. The system proposed in this study takes power distribution… More >

  • Open Access

    ARTICLE

    Service Scheduling Based on Edge Computing for Power Distribution IoT

    Zhu Liu1, 2, *, Xuesong Qiu1, Shuai Zhang2, Siyang Deng2, Guangyi Liu3, *

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1351-1364, 2020, DOI:10.32604/cmc.2020.07334

    Abstract With the growing amounts of multi-micro grids, electric vehicles, smart home, smart cities connected to the Power Distribution Internet of Things (PD-IoT) system, greater computing resource and communication bandwidth are required for power distribution. It probably leads to extreme service delay and data congestion when a large number of data and business occur in emergence. This paper presents a service scheduling method based on edge computing to balance the business load of PD-IoT. The architecture, components and functional requirements of the PD-IoT with edge computing platform are proposed. Then, the structure of the service scheduling system is presented. Further, a… More >

Displaying 1-10 on page 1 of 7. Per Page