Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    A Generative Sky Image-Based Two-Stage Framework for Probabilistic Photovoltaic Power Forecasting

    Chen Pan, ChangGyoon Lim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3747-3781, 2025, DOI:10.32604/cmes.2025.073389 - 23 December 2025

    Abstract Solar forecasting using ground-based sky image offers a promising approach to reduce uncertainty in photovoltaic (PV) power generation. However, existing methods often rely on deterministic predictions that lack diversity, making it difficult to capture the inherently stochastic nature of cloud movement. To address this limitation, we propose a new two-stage probabilistic forecasting framework. In the first stage, we introduce I-GPT, a multiscale physics-constrained generative model for stochastic sky image prediction. Given a sequence of past sky images, I-GPT uses a Transformer-based VQ-VAE. It also incorporates multi-scale physics-informed recurrent units (Multi-scale PhyCell) and dynamically weighted fuses… More >

  • Open Access

    ARTICLE

    Predicting Short-Term Wind Power Generation at Musalpetti Wind Farm: Model Development and Analysis

    Namal Rathnayake1, Jeevani Jayasinghe2,3, Rashmi Semasinghe2, Upaka Rathnayake4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2287-2305, 2025, DOI:10.32604/cmes.2025.064464 - 30 May 2025

    Abstract In this study, a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions. Using data on wind speed, air temperature, nacelle position, and actual power, lagged features were generated to capture temporal dependencies. Among 24 evaluated models, the ensemble bagging approach achieved the best performance, with R2 values of 0.89 at 0 min and 0.75 at 60 min. Shapley Additive exPlanations (SHAP) analysis revealed that while wind speed is the primary driver for short-term predictions, air temperature and nacelle position become more More >

  • Open Access

    ARTICLE

    Machine Learning Model for Wind Power Forecasting Using Enhanced Multilayer Perceptron

    Ahmed A. Ewees1,2,*, Mohammed A. A. Al-Qaness3, Ali Alshahrani1, Mohamed Abd Elaziz4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2287-2303, 2025, DOI:10.32604/cmc.2025.061320 - 16 April 2025

    Abstract Wind power forecasting plays a crucial role in optimizing the integration of wind energy into the grid by predicting wind patterns and energy output. This enhances the efficiency and reliability of renewable energy systems. Forecasting approaches inform energy management strategies, reduce reliance on fossil fuels, and support the broader transition to sustainable energy solutions. The primary goal of this study is to introduce an effective methodology for estimating wind power through temporal data analysis. This research advances an optimized Multilayer Perceptron (MLP) model using recently proposed metaheuristic optimization algorithms, namely the Fire Hawk Optimizer (FHO)… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Forecast Based on STL-IAOA-iTransformer Algorithm: A Case Study in Northwest China

    Zhaowei Yang1, Bo Yang2,*, Wenqi Liu1, Miwei Li2, Jiarong Wang2, Lin Jiang3, Yiyan Sang4, Zhenning Pan5

    Energy Engineering, Vol.122, No.2, pp. 405-430, 2025, DOI:10.32604/ee.2025.059515 - 31 January 2025

    Abstract Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids. Although numerous studies have employed various methods to forecast wind power, there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction. To improve the accuracy of short-term wind power forecast, this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer, which is based on seasonal and trend decomposition using LOESS (STL) and iTransformer model optimized by improved arithmetic optimization algorithm (IAOA).… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656 - 15 May 2024

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data… More >

  • Open Access

    ARTICLE

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

    Chenglian Ma1, Rui Han1, Zhao An2,*, Tianyu Hu2, Meizhu Jin2

    Energy Engineering, Vol.121, No.5, pp. 1245-1261, 2024, DOI:10.32604/ee.2024.046644 - 30 April 2024

    Abstract Precise forecasting of solar power is crucial for the development of sustainable energy systems. Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic (PV) power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data. To overcome these challenges, this research presents a cutting-edge, multi-stage forecasting method called D-Informer. This method skillfully merges the differential transformation algorithm with the Informer model, leveraging a detailed array of meteorological variables and historical PV power generation records. The D-Informer model exhibits remarkable superiority over competing… More > Graphic Abstract

    Weather-Driven Solar Power Forecasting Using D-Informer: Enhancing Predictions with Climate Variables

  • Open Access

    REVIEW

    A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas

    Xing Deng1,2, Feipeng Da1,*, Haijian Shao2, Xia Wang3

    Energy Engineering, Vol.120, No.2, pp. 385-408, 2023, DOI:10.32604/ee.2023.023480 - 29 November 2022

    Abstract Photovoltaic power generating is one of the primary methods of utilizing solar energy resources, with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy. In order to provide reference strategies for pertinent researchers as well as potential implementation, this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches, statistical approaches and optimization techniques for solar power generation and forecasting. Deep learning-related methods, in particular, can theoretically handle arbitrary nonlinear transformations through proper model structural design, such as hidden layer topology optimization and objective function More > Graphic Abstract

    A Survey of the Researches on Grid-Connected Solar Power Generation Systems and Power Forecasting Methods Based on Ground-Based Cloud Atlas

  • Open Access

    EDITORIAL

    Key Optimization Issues for Renewable Energy Systems under Carbon-Peaking and Carbon Neutrality Targets: Current States and Perspectives

    Bo Yang1, Zhengxun Guo1, Jingbo Wang1,*, Chao Duan2, Yaxing Ren3, Yixuan Chen4

    Energy Engineering, Vol.119, No.5, pp. 1789-1795, 2022, DOI:10.32604/ee.2022.022217 - 21 July 2022

    Abstract This article has no abstract. More >

  • Open Access

    REVIEW

    The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy

    Dandan Xu1, Haijian Shao1,*, Xing Deng1,2, Xia Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 567-597, 2022, DOI:10.32604/cmes.2022.019245 - 14 March 2022

    Abstract As wind and photovoltaic energy become more prevalent, the optimization of power systems is becoming increasingly crucial. The current state of research in renewable generation and power forecasting technology, such as wind and photovoltaic power (PV), is described in this paper, with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting. The methods for forecasting wind power and PV production. The physical model, statistical learning method, and machine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production. More >

  • Open Access

    ARTICLE

    Fuzzy Based MPPT and Solar Power Forecasting Using Artificial Intelligence

    G. Geethamahalakshmi1,*, N. Kalaiarasi2, D. Nageswari1

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1667-1685, 2022, DOI:10.32604/iasc.2022.022728 - 09 December 2021

    Abstract Solar energy is the radiant heat and light energy harvested by ultra violet rays to convert into electrical Direct Current (DC). The solar energy stood ahead of other renewable energy as it can produce a constant level of alternating current over the year with minimal harmonic distortions. The renewable energy attracts the energy harvesters as there is rise of deficiency of carbon and reduction of efficiency in thermal energy generation. The concerns associated with the solar power generation are the fluctuation in the generated direct current due to the displacement of sun and deviation in… More >

Displaying 1-10 on page 1 of 13. Per Page