Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Increasing Crop Quality and Yield with a Machine Learning-Based Crop Monitoring System

    Anas Bilal1,*, Xiaowen Liu1, Haixia Long1,*, Muhammad Shafiq2, Muhammad Waqar3

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2401-2426, 2023, DOI:10.32604/cmc.2023.037857

    Abstract Farming is cultivating the soil, producing crops, and keeping livestock. The agricultural sector plays a crucial role in a country’s economic growth. This research proposes a two-stage machine learning framework for agriculture to improve efficiency and increase crop yield. In the first stage, machine learning algorithms generate data for extensive and far-flung agricultural areas and forecast crops. The recommended crops are based on various factors such as weather conditions, soil analysis, and the amount of fertilizers and pesticides required. In the second stage, a transfer learning-based model for plant seedlings, pests, and plant leaf disease datasets is used to detect… More >

  • Open Access

    ARTICLE

    AI Method for Improving Crop Yield Prediction Accuracy Using ANN

    T. Sivaranjani1,*, S. P. Vimal2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 153-170, 2023, DOI:10.32604/csse.2023.036724

    Abstract Crop Yield Prediction (CYP) is critical to world food production. Food safety is a top priority for policymakers. They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an agricultural business. Crop Yield (CY) is a complex variable influenced by multiple factors, including genotype, environment, and their interactions. CYP is a significant agrarian issue. However, CYP is the main task due to many composite factors, such as climatic conditions and soil characteristics. Machine Learning (ML) is a powerful tool for supporting CYP decisions, including decision support on which crops to grow in a… More >

  • Open Access

    ARTICLE

    Harris Hawks Optimizer with Graph Convolutional Network Based Weed Detection in Precision Agriculture

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana Murthy3, Padmakar Maddala4, E. Laxmi Lydia5, Seifedine Kadry6,7,8,*, Jungeun Kim9

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1533-1547, 2023, DOI:10.32604/csse.2023.036296

    Abstract Precision agriculture includes the optimum and adequate use of resources depending on several variables that govern crop yield. Precision agriculture offers a novel solution utilizing a systematic technique for current agricultural problems like balancing production and environmental concerns. Weed control has become one of the significant problems in the agricultural sector. In traditional weed control, the entire field is treated uniformly by spraying the soil, a single herbicide dose, weed, and crops in the same way. For more precise farming, robots could accomplish targeted weed treatment if they could specifically find the location of the dispensable plant and identify the… More >

  • Open Access

    ARTICLE

    Clustered Wireless Sensor Network in Precision Agriculture via Graph Theory

    L. R. Bindu1,*, P. Titus2, D. Dhanya3

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1435-1449, 2023, DOI:10.32604/iasc.2023.030591

    Abstract Food security and sustainable development is making a mandatory move in the entire human race. The attainment of this goal requires man to strive for a highly advanced state in the field of agriculture so that he can produce crops with a minimum amount of water and fertilizer. Even though our agricultural methodologies have undergone a series of metamorphoses in the process of a present smart-agricultural system, a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability. Towards such a futuristic method of cultivation, this paper proposes a novel method… More >

  • Open Access

    ARTICLE

    Computer Vision and Deep Learning-enabled Weed Detection Model for Precision Agriculture

    R. Punithavathi1, A. Delphin Carolina Rani2, K. R. Sughashini3, Chinnarao Kurangi4, M. Nirmala5, Hasmath Farhana Thariq Ahmed6, S. P. Balamurugan7,*

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2759-2774, 2023, DOI:10.32604/csse.2023.027647

    Abstract Presently, precision agriculture processes like plant disease, crop yield prediction, species recognition, weed detection, and irrigation can be accomplished by the use of computer vision (CV) approaches. Weed plays a vital role in influencing crop productivity. The wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are increased. Since the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity, this study presents a novel computer vision and deep learning based weed detection and classification (CVDL-WDC) model for precision agriculture. The proposed CVDL-WDC technique intends to properly discriminate the… More >

  • Open Access

    ARTICLE

    Autonomous Unmanned Aerial Vehicles Based Decision Support System for Weed Management

    Ashit Kumar Dutta1,*, Yasser Albagory2, Abdul Rahaman Wahab Sait3, Ismail Mohamed Keshta1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 899-915, 2022, DOI:10.32604/cmc.2022.026783

    Abstract Recently, autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare, agriculture, industrial automation, etc. Among the interesting applications of autonomous systems, their applicability in agricultural sector becomes significant. Autonomous unmanned aerial vehicles (UAVs) can be used for suitable site-specific weed management (SSWM) to improve crop productivity. In spite of substantial advancements in UAV based data collection systems, automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops. The recently developed deep learning (DL) models have exhibited effective performance in several… More >

  • Open Access

    ARTICLE

    Soil Nutrient Detection and Recommendation Using IoT and Fuzzy Logic

    R. Madhumathi1,*, T. Arumuganathan2, R. Shruthi1

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 455-469, 2022, DOI:10.32604/csse.2022.023792

    Abstract Precision agriculture is a modern farming practice that involves the usage of Internet of Things (IoT) to provide an intelligent farm management system. One of the important aspects in agriculture is the analysis of soil nutrients and balancing these inputs are essential for proper crop growth. The crop productivity and the soil fertility can be improved with effective nutrient management and precise application of fertilizers. This can be done by identifying the deficient nutrients with the help of an IoT system. As traditional approach is time consuming, an IoT-enabled system is developed using the colorimetry principle which analyzes the amount… More >

  • Open Access

    ARTICLE

    Design of Machine Learning Based Smart Irrigation System for Precision Agriculture

    Khalil Ibrahim Mohammad Abuzanouneh1, Fahd N. Al-Wesabi2, Amani Abdulrahman Albraikan3, Mesfer Al Duhayyim4, M. Al-Shabi5, Anwer Mustafa Hilal6, Manar Ahmed Hamza6,*, Abu Sarwar Zamani6, K. Muthulakshmi7

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 109-124, 2022, DOI:10.32604/cmc.2022.022648

    Abstract Agriculture 4.0, as the future of farming technology, comprises numerous key enabling technologies towards sustainable agriculture. The use of state-of-the-art technologies, such as the Internet of Things, transform traditional cultivation practices, like irrigation, to modern solutions of precision agriculture. To achieve effective water resource usage and automated irrigation in precision agriculture, recent technologies like machine learning (ML) can be employed. With this motivation, this paper design an IoT and ML enabled smart irrigation system (IoTML-SIS) for precision agriculture. The proposed IoTML-SIS technique allows to sense the parameters of the farmland and make appropriate decisions for irrigation. The proposed IoTML-SIS model… More >

  • Open Access

    ARTICLE

    IoT with Evolutionary Algorithm Based Deep Learning for Smart Irrigation System

    P. Suresh1,*, R. H. Aswathy1, Sridevi Arumugam2, Amani Abdulrahman Albraikan3, Fahd N. Al-Wesabi4, Anwer Mustafa Hilal5, Mohammad Alamgeer6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1713-1728, 2022, DOI:10.32604/cmc.2022.021789

    Abstract In India, water wastage in agricultural fields becomes a challenging issue and it is needed to minimize the loss of water in the irrigation process. Since the conventional irrigation system needs massive quantity of water utilization, a smart irrigation system can be designed with the help of recent technologies such as machine learning (ML) and the Internet of Things (IoT). With this motivation, this paper designs a novel IoT enabled deep learning enabled smart irrigation system (IoTDL-SIS) technique. The goal of the IoTDL-SIS technique focuses on the design of smart irrigation techniques for effectual water utilization with less human interventions.… More >

  • Open Access

    ARTICLE

    Artificial Intelligence Enabled Apple Leaf Disease Classification for Precision Agriculture

    Fahd N. Al-Wesabi1,2,*, Amani Abdulrahman Albraikan3, Anwer Mustafa Hilal4, Majdy M. Eltahir1, Manar Ahmed Hamza4, Abu Sarwar Zamani4

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6223-6238, 2022, DOI:10.32604/cmc.2022.021299

    Abstract Precision agriculture enables the recent technological advancements in farming sector to observe, measure, and analyze the requirements of individual fields and crops. The recent developments of computer vision and artificial intelligence (AI) techniques find a way for effective detection of plants, diseases, weeds, pests, etc. On the other hand, the detection of plant diseases, particularly apple leaf diseases using AI techniques can improve productivity and reduce crop loss. Besides, earlier and precise apple leaf disease detection can minimize the spread of the disease. Earlier works make use of traditional image processing techniques which cannot assure high detection rate on apple… More >

Displaying 1-10 on page 1 of 13. Per Page