Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

    Zhuo Chen1,*, Ningning Wang2, Wenbo Jin3, Dui Li1

    Energy Engineering, Vol.121, No.4, pp. 1007-1026, 2024, DOI:10.32604/ee.2023.045270

    Abstract A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines. To ensure the safe operation of crude oil pipelines, an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines. Aiming at the shortcomings of the ENN prediction model, which easily falls into the local minimum value and weak generalization ability in the implementation process, an optimized ENN prediction model based on the IRSA is proposed. The validity of the new model was confirmed by the accurate prediction of two sets of… More > Graphic Abstract

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

  • Open Access

    ARTICLE

    Modelling an Efficient URL Phishing Detection Approach Based on a Dense Network Model

    A. Aldo Tenis*, R. Santhosh

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2625-2641, 2023, DOI:10.32604/csse.2023.036626

    Abstract The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing. The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator (URLs) analysis. The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions, which deals with the detection of phishing. Contrarily, the URLs in both classes from the login page due, considering… More >

  • Open Access

    ARTICLE

    AI Method for Improving Crop Yield Prediction Accuracy Using ANN

    T. Sivaranjani1,*, S. P. Vimal2

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 153-170, 2023, DOI:10.32604/csse.2023.036724

    Abstract Crop Yield Prediction (CYP) is critical to world food production. Food safety is a top priority for policymakers. They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an agricultural business. Crop Yield (CY) is a complex variable influenced by multiple factors, including genotype, environment, and their interactions. CYP is a significant agrarian issue. However, CYP is the main task due to many composite factors, such as climatic conditions and soil characteristics. Machine Learning (ML) is a powerful tool for supporting CYP decisions, including decision support on which… More >

  • Open Access

    ARTICLE

    Adaptive Learning Video Streaming with QoE in Multi-Home Heterogeneous Networks

    S. Vijayashaarathi1,*, S. NithyaKalyani2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 2881-2897, 2023, DOI:10.32604/csse.2023.036864

    Abstract In recent years, real-time video streaming has grown in popularity. The growing popularity of the Internet of Things (IoT) and other wireless heterogeneous networks mandates that network resources be carefully apportioned among versatile users in order to achieve the best Quality of Experience (QoE) and performance objectives. Most researchers focused on Forward Error Correction (FEC) techniques when attempting to strike a balance between QoE and performance. However, as network capacity increases, the performance degrades, impacting the live visual experience. Recently, Deep Learning (DL) algorithms have been successfully integrated with FEC to stream videos across multiple… More >

  • Open Access

    ARTICLE

    Earlier Detection of Alzheimer’s Disease Using 3D-Convolutional Neural Networks

    V. P. Nithya*, N. Mohanasundaram, R. Santhosh

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2601-2618, 2023, DOI:10.32604/csse.2023.030503

    Abstract The prediction of mild cognitive impairment or Alzheimer’s disease (AD) has gained the attention of huge researchers as the disease occurrence is increasing, and there is a need for earlier prediction. Regrettably, due to the high-dimensionality nature of neural data and the least available samples, modelling an efficient computer diagnostic system is highly solicited. Learning approaches, specifically deep learning approaches, are essential in disease prediction. Deep Learning (DL) approaches are successfully demonstrated for their higher-level performance in various fields like medical imaging. A novel 3D-Convolutional Neural Network (3D-CNN) architecture is proposed to predict AD with… More >

  • Open Access

    ARTICLE

    Research on Federated Learning Data Sharing Scheme Based on Differential Privacy

    Lihong Guo*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5069-5085, 2023, DOI:10.32604/cmc.2023.034571

    Abstract To realize data sharing, and to fully use the data value, breaking the data island between institutions to realize data collaboration has become a new sharing mode. This paper proposed a distributed data security sharing scheme based on C/S communication mode, and constructed a federated learning architecture that uses differential privacy technology to protect training parameters. Clients do not need to share local data, and they only need to upload the trained model parameters to achieve data sharing. In the process of training, a distributed parameter update mechanism is introduced. The server is mainly responsible… More >

  • Open Access

    ARTICLE

    Stock Prediction Based on Technical Indicators Using Deep Learning Model

    Manish Agrawal1, Piyush Kumar Shukla2, Rajit Nair3, Anand Nayyar4,5,*, Mehedi Masud6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 287-304, 2022, DOI:10.32604/cmc.2022.014637

    Abstract Stock market trends forecast is one of the most current topics and a significant research challenge due to its dynamic and unstable nature. The stock data is usually non-stationary, and attributes are non-correlative to each other. Several traditional Stock Technical Indicators (STIs) may incorrectly predict the stock market trends. To study the stock market characteristics using STIs and make efficient trading decisions, a robust model is built. This paper aims to build up an Evolutionary Deep Learning Model (EDLM) to identify stock trends’ prices by using STIs. The proposed model has implemented the Deep Learning… More >

  • Open Access

    ARTICLE

    An Advanced Approach for Improving the Prediction Accuracy of Natural Gas Price

    Quanjia Zuo1, Fanyi Meng1,*, Yang Bai2

    Energy Engineering, Vol.118, No.2, pp. 303-322, 2021, DOI:10.32604/EE.2021.013239

    Abstract As one of the most important commodity futures, the price forecasting of natural gas futures is of great significance for hedging and risk aversion. This paper mainly focuses on natural gas futures pricing which considers seasonality fluctuations. In order to study this issue, we propose a modified approach called six-factor model, in which the influence of seasonal fluctuations are eliminated in every random factor. Using Monte Carlo method, we first assess and comparative analyze the fitting ability of three-factor model and six-factor model for the out of sample data. It is found that six-factor model More >

  • Open Access

    ABSTRACT

    Effects of Tangent Operators on Prediction Accuracy of Meso-mechanical Constitutive Model of Elasto-plastic Composites

    Sujuan Guo, Guozheng Kang, Juan Zhang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 121-122, 2011, DOI:10.3970/icces.2011.018.121

    Abstract With a newly developed homogenization cyclic constitutive model of particle reinforced metal matrix composites (Guo et al., 2011), the effects of tangent operators, i.e., continuum and algorithmic tangent operators [defined by Doghri and Ouaar (2003)] on the accuracy of the developed meso-mechanical constitutive model to predict the monotonic tensile and uniaxial ratchetting deformation of SiCP/6061Al composites were investigated in this work. The predicted results were obtained by the developed model with the choices of different tangent operators and various magnitudes of loading increments. Some useful accuracy comparison and error analysis on the predicted results were More >

Displaying 1-10 on page 1 of 9. Per Page