Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Deep Learning-Based Inverse Design: Exploring Latent Space Information for Geometric Structure Optimization

    Nguyen Dong Phuong1, Nanthakumar Srivilliputtur Subbiah1, Yabin Jin2, Xiaoying Zhuang1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 263-303, 2025, DOI:10.32604/cmes.2025.067100 - 30 October 2025

    Abstract Traditional inverse neural network (INN) approaches for inverse design typically require auxiliary feedforward networks, leading to increased computational complexity and architectural dependencies. This study introduces a standalone INN methodology that eliminates the need for feedforward networks while maintaining high reconstruction accuracy. The approach integrates Principal Component Analysis (PCA) and Partial Least Squares (PLS) for optimized feature space learning, enabling the standalone INN to effectively capture bidirectional mappings between geometric parameters and mechanical properties. Validation using established numerical datasets demonstrates that the standalone INN architecture achieves reconstruction accuracy equal or better than traditional tandem approaches while More >

  • Open Access

    ARTICLE

    AI for Cleaner Air: Predictive Modeling of PM2.5 Using Deep Learning and Traditional Time-Series Approaches

    Muhammad Salman Qamar1,2,*, Muhammad Fahad Munir2, Athar Waseem2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3557-3584, 2025, DOI:10.32604/cmes.2025.067447 - 30 September 2025

    Abstract Air pollution, specifically fine particulate matter (PM2.5), represents a critical environmental and public health concern due to its adverse effects on respiratory and cardiovascular systems. Accurate forecasting of PM2.5 concentrations is essential for mitigating health risks; however, the inherent nonlinearity and dynamic variability of air quality data present significant challenges. This study conducts a systematic evaluation of deep learning algorithms including Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and the hybrid CNN-LSTM as well as statistical models, AutoRegressive Integrated Moving Average (ARIMA) and Maximum Likelihood Estimation (MLE) for hourly PM2.5 forecasting. Model performance is… More >

  • Open Access

    ARTICLE

    Topological Characterization and Predictive Modeling of Graph Energy in Ionic Covalent Organic Frameworks

    Micheal Arockiaraj1,*, Aravindan Maaran2, C. I. Arokiya Doss2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 637-655, 2025, DOI:10.32604/cmc.2025.065674 - 29 August 2025

    Abstract Covalent organic frameworks (COFs) are crystalline materials composed of covalently bonded organic ligands with chemically permeable structures. Their crystallization is achieved by balancing thermal reversibility with the dynamic nature of the frameworks. Ionic covalent organic frameworks (ICOFs) are a subclass that incorporates ions in positive, negative, or zwitterionic forms into the frameworks. In particular, spiroborate-derived linkages enhance both the structural diversity and functionality of ICOFs. Unlike electroneutral COFs, ICOFs can be tailored by adjusting the types and arrangements of ions, influencing their formation mechanisms and physical properties. This study focuses on analyzing the graph-based structural… More >

  • Open Access

    ARTICLE

    Bidirectional LSTM-Based Energy Consumption Forecasting: Advancing AI-Driven Cloud Integration for Cognitive City Energy Management

    Sheik Mohideen Shah1, Meganathan Selvamani1, Mahesh Thyluru Ramakrishna2,*, Surbhi Bhatia Khan3,4,5, Shakila Basheer6, Wajdan Al Malwi7, Mohammad Tabrez Quasim8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2907-2926, 2025, DOI:10.32604/cmc.2025.063809 - 16 April 2025

    Abstract Efficient energy management is a cornerstone of advancing cognitive cities, where AI, IoT, and cloud computing seamlessly integrate to meet escalating global energy demands. Within this context, the ability to forecast electricity consumption with precision is vital, particularly in residential settings where usage patterns are highly variable and complex. This study presents an innovative approach to energy consumption forecasting using a bidirectional Long Short-Term Memory (LSTM) network. Leveraging a dataset containing over two million multivariate, time-series observations collected from a single household over nearly four years, our model addresses the limitations of traditional time-series forecasting… More >

  • Open Access

    ARTICLE

    Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images

    Anandhavalli Muniasamy1,*, Ashwag Alasmari2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 569-592, 2025, DOI:10.32604/cmes.2025.060484 - 11 April 2025

    Abstract The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients. Today, the mass disease that needs attention in this context is cataracts. Although deep learning has significantly advanced the analysis of ocular disease images, there is a need for a probabilistic model to generate the distributions of potential outcomes and thus make decisions related to uncertainty quantification. Therefore, this study implements a Bayesian Convolutional Neural Networks (BCNN) model for predicting cataracts by assigning probability values to the predictions. It prepares convolutional neural network (CNN) and BCNN models. More > Graphic Abstract

    Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images

  • Open Access

    ARTICLE

    Deep Learning-Based Decision Support System for Predicting Pregnancy Risk Levels through Cardiotocograph (CTG) Imaging Analysis

    Ali Hasan Dakheel1,*, Mohammed Raheem Mohammed1, Zainab Ali Abd Alhuseen1, Wassan Adnan Hashim2,3

    Intelligent Automation & Soft Computing, Vol.40, pp. 195-220, 2025, DOI:10.32604/iasc.2025.061622 - 28 February 2025

    Abstract The prediction of pregnancy-related hazards must be accurate and timely to safeguard mother and fetal health. This study aims to enhance risk prediction in pregnancy with a novel deep learning model based on a Long Short-Term Memory (LSTM) generator, designed to capture temporal relationships in cardiotocography (CTG) data. This methodology integrates CTG signals with demographic characteristics and utilizes preprocessing techniques such as noise reduction, normalization, and segmentation to create high-quality input for the model. It uses convolutional layers to extract spatial information, followed by LSTM layers to model sequences for superior predictive performance. The overall More >

  • Open Access

    ARTICLE

    Prediction and Optimization of the Thermal Properties of TiO2/Water Nanofluids in the Framework of a Machine Learning Approach

    Jiachen Li1,2, Wenlong Deng3, Shan Qing1,2,*, Yiqin Liu4, Hao Zhang1,2, Min Zheng1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2181-2200, 2023, DOI:10.32604/fdmp.2023.027299 - 04 April 2023

    Abstract In this study, comparing multiple models of machine learning, a multiple linear regression (MLP), multilayer feed-forward artificial neural network (BP) model, and a radial-basis feed-forward artificial neural network (RBF-BP) model are selected for the optimization of the thermal properties of TiO2/water nanofluids. In particular, the least squares support vector machine (LS-SVM) method and radial basis support vector machine (RB-SVM) method are implemented. First, curve fitting is performed by means of multiple linear regression in order to obtain bivariate correlation functions for thermal conductivity and viscosity of the nanofluid. Then the aforementioned models are used for a More >

  • Open Access

    ARTICLE

    Horizontal Voting Ensemble Based Predictive Modeling System for Colon Cancer

    Ushaa Eswaran1,*, S. Anand2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1917-1928, 2023, DOI:10.32604/csse.2023.032523 - 09 February 2023

    Abstract Colon cancer is the third most commonly diagnosed cancer in the world. Most colon AdenoCArcinoma (ACA) arises from pre-existing benign polyps in the mucosa of the bowel. Thus, detecting benign at the earliest helps reduce the mortality rate. In this work, a Predictive Modeling System (PMS) is developed for the classification of colon cancer using the Horizontal Voting Ensemble (HVE) method. Identifying different patterns in microscopic images is essential to an effective classification system. A twelve-layer deep learning architecture has been developed to extract these patterns. The developed HVE algorithm can increase the system’s performance… More >

  • Open Access

    ARTICLE

    Uncertainty Analysis on Electric Power Consumption

    Oakyoung Han1, Jaehyoun Kim2,*

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2621-2632, 2021, DOI:10.32604/cmc.2021.014665 - 13 April 2021

    Abstract The analysis of large time-series datasets has profoundly enhanced our ability to make accurate predictions in many fields. However, unpredictable phenomena, such as extreme weather events or the novel coronavirus 2019 (COVID-19) outbreak, can greatly limit the ability of time-series analyses to establish reliable patterns. The present work addresses this issue by applying uncertainty analysis using a probability distribution function, and applies the proposed scheme within a preliminary study involving the prediction of power consumption for a single hotel in Seoul, South Korea based on an analysis of 53,567 data items collected by the Korea… More >

Displaying 1-10 on page 1 of 9. Per Page