Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (323)
  • Open Access

    ARTICLE

    Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems

    Rabia Abid1, Muhammad Rizwan2, Abdulatif Alabdulatif3,*, Abdullah Alnajim4, Meznah Alamro5, Mourade Azrour6

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3413-3429, 2024, DOI:10.32604/cmc.2024.046880 - 26 March 2024

    Abstract Explainable Artificial Intelligence (XAI) has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning (ML) and Deep Learning (DL) based algorithms. In this paper, we chose e-healthcare systems for efficient decision-making and data classification, especially in data security, data handling, diagnostics, laboratories, and decision-making. Federated Machine Learning (FML) is a new and advanced technology that helps to maintain privacy for Personal Health Records (PHR) and handle a large amount of medical data effectively. In this context, XAI, along with FML, increases efficiency and improves the More >

  • Open Access

    ARTICLE

    A Holistic Secure Communication Mechanism Using a Multilayered Cryptographic Protocol to Enhanced Security

    Fauziyah1, Zhaoshun Wang1,*, Mujahid Tabassum2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4417-4452, 2024, DOI:10.32604/cmc.2024.046797 - 26 March 2024

    Abstract In an era characterized by digital pervasiveness and rapidly expanding datasets, ensuring the integrity and reliability of information is paramount. As cyber threats evolve in complexity, traditional cryptographic methods face increasingly sophisticated challenges. This article initiates an exploration into these challenges, focusing on key exchanges (encompassing their variety and subtleties), scalability, and the time metrics associated with various cryptographic processes. We propose a novel cryptographic approach underpinned by theoretical frameworks and practical engineering. Central to this approach is a thorough analysis of the interplay between Confidentiality and Integrity, foundational pillars of information security. Our method… More >

  • Open Access

    ARTICLE

    Research on Data Tampering Prevention Method for ATC Network Based on Zero Trust

    Xiaoyan Zhu1, Ruchun Jia2, Tingrui Zhang3, Song Yao4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4363-4377, 2024, DOI:10.32604/cmc.2023.045615 - 26 March 2024

    Abstract The traditional air traffic control information sharing data has weak security characteristics of personal privacy data and poor effect, which is easy to leads to the problem that the data is usurped. Starting from the application of the ATC (automatic train control) network, this paper focuses on the zero trust and zero trust access strategy and the tamper-proof method of information-sharing network data. Through the improvement of ATC’s zero trust physical layer authentication and network data distributed feature differentiation calculation, this paper reconstructs the personal privacy scope authentication structure and designs a tamper-proof method of… More >

  • Open Access

    ARTICLE

    A Cover-Independent Deep Image Hiding Method Based on Domain Attention Mechanism

    Nannan Wu1, Xianyi Chen1,*, James Msughter Adeke2, Junjie Zhao2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3001-3019, 2024, DOI:10.32604/cmc.2023.045311 - 26 March 2024

    Abstract Recently, deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding. However, these approaches have some limitations. For example, a cover image lacks self-adaptability, information leakage, or weak concealment. To address these issues, this study proposes a universal and adaptable image-hiding method. First, a domain attention mechanism is designed by combining the Atrous convolution, which makes better use of the relationship between the secret image domain and the cover image domain. Second, to improve perceived human similarity, perceptual loss is incorporated into the training process. The experimental results are promising, with More >

  • Open Access

    ARTICLE

    Privacy-Preserving Federated Deep Learning Diagnostic Method for Multi-Stage Diseases

    Jinbo Yang1, Hai Huang1, Lailai Yin2, Jiaxing Qu3, Wanjuan Xie4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3085-3099, 2024, DOI:10.32604/cmes.2023.045417 - 11 March 2024

    Abstract Diagnosing multi-stage diseases typically requires doctors to consider multiple data sources, including clinical symptoms, physical signs, biochemical test results, imaging findings, pathological examination data, and even genetic data. When applying machine learning modeling to predict and diagnose multi-stage diseases, several challenges need to be addressed. Firstly, the model needs to handle multimodal data, as the data used by doctors for diagnosis includes image data, natural language data, and structured data. Secondly, privacy of patients’ data needs to be protected, as these data contain the most sensitive and private information. Lastly, considering the practicality of the… More >

  • Open Access

    ARTICLE

    KSKV: Key-Strategy for Key-Value Data Collection with Local Differential Privacy

    Dan Zhao1, Yang You2, Chuanwen Luo3,*, Ting Chen4,*, Yang Liu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3063-3083, 2024, DOI:10.32604/cmes.2023.045400 - 11 March 2024

    Abstract In recent years, the research field of data collection under local differential privacy (LDP) has expanded its focus from elementary data types to include more complex structural data, such as set-value and graph data. However, our comprehensive review of existing literature reveals that there needs to be more studies that engage with key-value data collection. Such studies would simultaneously collect the frequencies of keys and the mean of values associated with each key. Additionally, the allocation of the privacy budget between the frequencies of keys and the means of values for each key does not… More >

  • Open Access

    ARTICLE

    Blockchain-Based Certificateless Bidirectional Authenticated Searchable Encryption Scheme in Cloud Email System

    Yanzhong Sun1, Xiaoni Du1,*, Shufen Niu2, Xiaodong Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3287-3310, 2024, DOI:10.32604/cmes.2023.043589 - 11 March 2024

    Abstract Traditional email systems can only achieve one-way communication, which means only the receiver is allowed to search for emails on the email server. In this paper, we propose a blockchain-based certificateless bidirectional authenticated searchable encryption model for a cloud email system named certificateless authenticated bidirectional searchable encryption (CL-BSE) by combining the storage function of cloud server with the communication function of email server. In the new model, not only can the data receiver search for the relevant content by generating its own trapdoor, but the data owner also can retrieve the content in the same… More >

  • Open Access

    REVIEW

    A Survey on Blockchain-Based Federated Learning: Categorization, Application and Analysis

    Yuming Tang1,#, Yitian Zhang2,#, Tao Niu1, Zhen Li2,3,*, Zijian Zhang1,3, Huaping Chen4, Long Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2451-2477, 2024, DOI:10.32604/cmes.2024.030084 - 11 March 2024

    Abstract Federated Learning (FL), as an emergent paradigm in privacy-preserving machine learning, has garnered significant interest from scholars and engineers across both academic and industrial spheres. Despite its innovative approach to model training across distributed networks, FL has its vulnerabilities; the centralized server-client architecture introduces risks of single-point failures. Moreover, the integrity of the global model—a cornerstone of FL—is susceptible to compromise through poisoning attacks by malicious actors. Such attacks and the potential for privacy leakage via inference starkly undermine FL’s foundational privacy and security goals. For these reasons, some participants unwilling use their private data… More >

  • Open Access

    REVIEW

    A Comprehensive Survey for Privacy-Preserving Biometrics: Recent Approaches, Challenges, and Future Directions

    Shahriar Md Arman1, Tao Yang1,*, Shahadat Shahed2, Alanoud Al Mazroa3, Afraa Attiah4, Linda Mohaisen4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2087-2110, 2024, DOI:10.32604/cmc.2024.047870 - 27 February 2024

    Abstract The rapid growth of smart technologies and services has intensified the challenges surrounding identity authentication techniques. Biometric credentials are increasingly being used for verification due to their advantages over traditional methods, making it crucial to safeguard the privacy of people’s biometric data in various scenarios. This paper offers an in-depth exploration for privacy-preserving techniques and potential threats to biometric systems. It proposes a noble and thorough taxonomy survey for privacy-preserving techniques, as well as a systematic framework for categorizing the field’s existing literature. We review the state-of-the-art methods and address their advantages and limitations in More >

  • Open Access

    REVIEW

    A Review of Lightweight Security and Privacy for Resource-Constrained IoT Devices

    Sunil Kumar1, Dilip Kumar1, Ramraj Dangi2, Gaurav Choudhary3, Nicola Dragoni4, Ilsun You5,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 31-63, 2024, DOI:10.32604/cmc.2023.047084 - 30 January 2024

    Abstract The widespread and growing interest in the Internet of Things (IoT) may be attributed to its usefulness in many different fields. Physical settings are probed for data, which is then transferred via linked networks. There are several hurdles to overcome when putting IoT into practice, from managing server infrastructure to coordinating the use of tiny sensors. When it comes to deploying IoT, everyone agrees that security is the biggest issue. This is due to the fact that a large number of IoT devices exist in the physical world and that many of them have constrained More >

Displaying 121-130 on page 13 of 323. Per Page