Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access


    Hybrid Deep Learning Framework for Privacy Preservation in Geo-Distributed Data Centre

    S. Nithyanantham1,*, G. Singaravel2

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1905-1919, 2022, DOI:10.32604/iasc.2022.022499

    Abstract In recent times, a huge amount of data is being created from different sources and the size of the data generated on the Internet has already surpassed two Exabytes. Big Data processing and analysis can be employed in many disciplines which can aid the decision-making process with privacy preservation of users’ private data. To store large quantity of data, Geo-Distributed Data Centres (GDDC) are developed. In recent times, several applications comprising data analytics and machine learning have been designed for GDDC. In this view, this paper presents a hybrid deep learning framework for privacy preservation in distributed DCs. The proposed… More >

  • Open Access


    A Review on Privacy Preservation of Location-Based Services in Internet of Things

    Raniyah Wazirali*

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 767-779, 2022, DOI:10.32604/iasc.2022.019243

    Abstract Internet of Things (IoT) has become popular with the rapid development of sensing devices, and it offers a large number of services. Location data is one of the most important information required for IoT systems. With the widespread of Location Based Services (LBS) applications, the privacy and security threats are also emerging. Recently, a large number of studies focused on localization and positioning functionalities, however, the risk associated with user privacy has not been sufficiently addressed so far. Therefore, privacy and security of device location in IoT systems is an active area of research. Since LBS is often exposed to… More >

  • Open Access


    Blockchain-Enabled EHR Framework for Internet of Medical Things

    Lewis Nkenyereye1,*, S. M. Riazul Islam2, Mahmud Hossain3, M. Abdullah-Al-Wadud4, Atif Alamri4

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 211-221, 2021, DOI:10.32604/cmc.2021.013796

    Abstract The Internet of Medical Things (IoMT) offers an infrastructure made of smart medical equipment and software applications for healthcare services. Through the internet, the IoMT is capable of providing remote medical diagnosis and timely health services. The patients can use their smart devices to create, store and share their electronic health records (EHR) with a variety of medical personnel including medical doctors and nurses. However, unless the underlying commination within IoMT is secured, malicious users can intercept, modify and even delete the sensitive EHR data of patients. Patients also lose full control of their EHR since most healthcare services within… More >

  • Open Access


    A Differential Privacy Based (k-Ψ)-Anonymity Method for Trajectory Data Publishing

    Hongyu Chen1, Shuyu Li1, *, Zhaosheng Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2665-2685, 2020, DOI:10.32604/cmc.2020.010965

    Abstract In recent years, mobile Internet technology and location based services have wide application. Application providers and users have accumulated huge amount of trajectory data. While publishing and analyzing user trajectory data have brought great convenience for people, the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent. Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge. For privacy preserving trajectory data publishing, we propose a differential privacy based (k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack. The proposed method is divided… More >

  • Open Access


    A Distributed Privacy Preservation Approach for Big Data in Public Health Emergencies Using Smart Contract and SGX

    Jun Li1, 2, Jieren Cheng2, *, Naixue Xiong3, Lougao Zhan4, Yuan Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 723-741, 2020, DOI:10.32604/cmc.2020.011272

    Abstract Security and privacy issues have become a rapidly growing problem with the fast development of big data in public health. However, big data faces many ongoing serious challenges in the process of collection, storage, and use. Among them, data security and privacy problems have attracted extensive interest. In an effort to overcome this challenge, this article aims to present a distributed privacy preservation approach based on smart contracts and Intel Software Guard Extensions (SGX). First of all, we define SGX as a trusted edge computing node, design data access module, data protection module, and data integrity check module, to achieve… More >

  • Open Access


    A Review of Data Cleaning Methods for Web Information System

    Jinlin Wang1, Xing Wang1, *, Yuchen Yang1, Hongli Zhang1, Binxing Fang1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1053-1075, 2020, DOI:10.32604/cmc.2020.08675

    Abstract Web information system (WIS) is frequently-used and indispensable in daily social life. WIS provides information services in many scenarios, such as electronic commerce, communities, and edutainment. Data cleaning plays an essential role in various WIS scenarios to improve the quality of data service. In this paper, we present a review of the state-of-the-art methods for data cleaning in WIS. According to the characteristics of data cleaning, we extract the critical elements of WIS, such as interactive objects, application scenarios, and core technology, to classify the existing works. Then, after elaborating and analyzing each category, we summarize the descriptions and challenges… More >

Displaying 11-20 on page 2 of 16. Per Page