Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Enhanced Clustering Based OSN Privacy Preservation to Ensure k-Anonymity, t-Closeness, l-Diversity, and Balanced Privacy Utility

    Rupali Gangarde1,2,*, Amit Sharma3, Ambika Pawar4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2171-2190, 2023, DOI:10.32604/cmc.2023.035559

    Abstract Online Social Networks (OSN) sites allow end-users to share a great deal of information, which may also contain sensitive information, that may be subject to commercial or non-commercial privacy attacks. As a result, guaranteeing various levels of privacy is critical while publishing data by OSNs. The clustering-based solutions proved an effective mechanism to achieve the privacy notions in OSNs. But fixed clustering limits the performance and scalability. Data utility degrades with increased privacy, so balancing the privacy utility trade-off is an open research issue. The research has proposed a novel privacy preservation model using the… More >

  • Open Access

    ARTICLE

    Computer Forensics Framework for Efficient and Lawful Privacy-Preserved Investigation

    Waleed Halboob1,*, Jalal Almuhtadi1,2

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2071-2092, 2023, DOI:10.32604/csse.2023.024110

    Abstract Privacy preservation (PP) in Digital forensics (DF) is a conflicted and non-trivial issue. Existing solutions use the searchable encryption concept and, as a result, are not efficient and support only a keyword search. Moreover, the collected forensic data cannot be analyzed using existing well-known digital tools. This research paper first investigates the lawful requirements for PP in DF based on the organization for economic co-operation and development OECB) privacy guidelines. To have an efficient investigation process and meet the increased volume of data, the presented framework is designed based on the selective imaging concept and… More >

  • Open Access

    ARTICLE

    Proposed Privacy Preservation Technique for Color Medical Images

    Walid El-Shafai1,2, Hayam A. Abd El-Hameed3, Noha A. El-Hag4, Ashraf A. M. Khalaf3, Naglaa F. Soliman5, Hussah Nasser AlEisa6,*, Fathi E. Abd El-Samie1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 719-732, 2023, DOI:10.32604/iasc.2023.031079

    Abstract Nowadays, the security of images or information is very important. This paper introduces a proposed hybrid watermarking and encryption technique for increasing medical image security. First, the secret medical image is encrypted using Advanced Encryption Standard (AES) algorithm. Then, the secret report of the patient is embedded into the encrypted secret medical image with the Least Significant Bit (LSB) watermarking algorithm. After that, the encrypted secret medical image with the secret report is concealed in a cover medical image, using Kekre’s Median Codebook Generation (KMCG) algorithm. Afterwards, the stego-image obtained is split into 16 parts.… More >

  • Open Access

    REVIEW

    A Survey of Privacy Preservation for Deep Learning Applications

    Ling Zhang1,*, Lina Nie1, Leyan Yu2

    Journal of Information Hiding and Privacy Protection, Vol.4, No.2, pp. 69-78, 2022, DOI:10.32604/jihpp.2022.039284

    Abstract Deep learning is widely used in artificial intelligence fields such as computer vision, natural language recognition, and intelligent robots. With the development of deep learning, people’s expectations for this technology are increasing daily. Enterprises and individuals usually need a lot of computing power to support the practical work of deep learning technology. Many cloud service providers provide and deploy cloud computing environments. However, there are severe risks of privacy leakage when transferring data to cloud service providers and using data for model training, which makes users unable to use deep learning technology in cloud computing More >

  • Open Access

    ARTICLE

    Slicing-Based Enhanced Method for Privacy-Preserving in Publishing Big Data

    Mohammed BinJubier1, Mohd Arfian Ismail1, Abdulghani Ali Ahmed2,*, Ali Safaa Sadiq3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3665-3686, 2022, DOI:10.32604/cmc.2022.024663

    Abstract Publishing big data and making it accessible to researchers is important for knowledge building as it helps in applying highly efficient methods to plan, conduct, and assess scientific research. However, publishing and processing big data poses a privacy concern related to protecting individuals’ sensitive information while maintaining the usability of the published data. Several anonymization methods, such as slicing and merging, have been designed as solutions to the privacy concerns for publishing big data. However, the major drawback of merging and slicing is the random permutation procedure, which does not always guarantee complete protection against… More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Framework for Privacy Preservation in Geo-Distributed Data Centre

    S. Nithyanantham1,*, G. Singaravel2

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1905-1919, 2022, DOI:10.32604/iasc.2022.022499

    Abstract In recent times, a huge amount of data is being created from different sources and the size of the data generated on the Internet has already surpassed two Exabytes. Big Data processing and analysis can be employed in many disciplines which can aid the decision-making process with privacy preservation of users’ private data. To store large quantity of data, Geo-Distributed Data Centres (GDDC) are developed. In recent times, several applications comprising data analytics and machine learning have been designed for GDDC. In this view, this paper presents a hybrid deep learning framework for privacy preservation… More >

  • Open Access

    REVIEW

    A Review on Privacy Preservation of Location-Based Services in Internet of Things

    Raniyah Wazirali*

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 767-779, 2022, DOI:10.32604/iasc.2022.019243

    Abstract Internet of Things (IoT) has become popular with the rapid development of sensing devices, and it offers a large number of services. Location data is one of the most important information required for IoT systems. With the widespread of Location Based Services (LBS) applications, the privacy and security threats are also emerging. Recently, a large number of studies focused on localization and positioning functionalities, however, the risk associated with user privacy has not been sufficiently addressed so far. Therefore, privacy and security of device location in IoT systems is an active area of research. Since… More >

  • Open Access

    ARTICLE

    Blockchain-Enabled EHR Framework for Internet of Medical Things

    Lewis Nkenyereye1,*, S. M. Riazul Islam2, Mahmud Hossain3, M. Abdullah-Al-Wadud4, Atif Alamri4

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 211-221, 2021, DOI:10.32604/cmc.2021.013796

    Abstract The Internet of Medical Things (IoMT) offers an infrastructure made of smart medical equipment and software applications for healthcare services. Through the internet, the IoMT is capable of providing remote medical diagnosis and timely health services. The patients can use their smart devices to create, store and share their electronic health records (EHR) with a variety of medical personnel including medical doctors and nurses. However, unless the underlying commination within IoMT is secured, malicious users can intercept, modify and even delete the sensitive EHR data of patients. Patients also lose full control of their EHR… More >

  • Open Access

    ARTICLE

    A Differential Privacy Based (k-Ψ)-Anonymity Method for Trajectory Data Publishing

    Hongyu Chen1, Shuyu Li1, *, Zhaosheng Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2665-2685, 2020, DOI:10.32604/cmc.2020.010965

    Abstract In recent years, mobile Internet technology and location based services have wide application. Application providers and users have accumulated huge amount of trajectory data. While publishing and analyzing user trajectory data have brought great convenience for people, the disclosure risks of user privacy caused by the trajectory data publishing are also becoming more and more prominent. Traditional k-anonymous trajectory data publishing technologies cannot effectively protect user privacy against attackers with strong background knowledge. For privacy preserving trajectory data publishing, we propose a differential privacy based (k-Ψ)-anonymity method to defend against re-identification and probabilistic inference attack. The… More >

  • Open Access

    ARTICLE

    A Distributed Privacy Preservation Approach for Big Data in Public Health Emergencies Using Smart Contract and SGX

    Jun Li1, 2, Jieren Cheng2, *, Naixue Xiong3, Lougao Zhan4, Yuan Zhang1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 723-741, 2020, DOI:10.32604/cmc.2020.011272

    Abstract Security and privacy issues have become a rapidly growing problem with the fast development of big data in public health. However, big data faces many ongoing serious challenges in the process of collection, storage, and use. Among them, data security and privacy problems have attracted extensive interest. In an effort to overcome this challenge, this article aims to present a distributed privacy preservation approach based on smart contracts and Intel Software Guard Extensions (SGX). First of all, we define SGX as a trusted edge computing node, design data access module, data protection module, and data… More >

Displaying 11-20 on page 2 of 21. Per Page