Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Privacy Preserving Federated Anomaly Detection in IoT Edge Computing Using Bayesian Game Reinforcement Learning

    Fatima Asiri1, Wajdan Al Malwi1, Fahad Masood2, Mohammed S. Alshehri3, Tamara Zhukabayeva4, Syed Aziz Shah5, Jawad Ahmad6,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3943-3960, 2025, DOI:10.32604/cmc.2025.066498 - 03 July 2025

    Abstract Edge computing (EC) combined with the Internet of Things (IoT) provides a scalable and efficient solution for smart homes. The rapid proliferation of IoT devices poses real-time data processing and security challenges. EC has become a transformative paradigm for addressing these challenges, particularly in intrusion detection and anomaly mitigation. The widespread connectivity of IoT edge networks has exposed them to various security threats, necessitating robust strategies to detect malicious activities. This research presents a privacy-preserving federated anomaly detection framework combined with Bayesian game theory (BGT) and double deep Q-learning (DDQL). The proposed framework integrates BGT… More >

  • Open Access

    ARTICLE

    HEaaN-ID3: Fully Homomorphic Privacy-Preserving ID3-Decision Trees Using CKKS

    Dain Lee1,#, Hojune Shin1,#, Jihyeon Choi1, Younho Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3673-3705, 2025, DOI:10.32604/cmc.2025.064161 - 03 July 2025

    Abstract In this study, we investigated privacy-preserving ID3 Decision Tree (PPID3) training and inference based on fully homomorphic encryption (FHE), which has not been actively explored due to the high computational cost associated with managing numerous child nodes in an ID3 tree. We propose HEaaN-ID3, a novel approach to realize PPID3 using the Cheon-Kim-Kim-Song (CKKS) scheme. HEaaN-ID3 is the first FHE-based ID3 framework that completes both training and inference without any intermediate decryption, which is especially valuable when decryption keys are inaccessible or a single-cloud security domain is assumed. To enhance computational efficiency, we adopt a… More >

  • Open Access

    ARTICLE

    Design and Application of a New Distributed Dynamic Spatio-Temporal Privacy Preserving Mechanisms

    Jiacheng Xiong1, Xingshu Chen1,2,3,*, Xiao Lan2,3, Liangguo Chen1,2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2273-2303, 2025, DOI:10.32604/cmc.2025.063984 - 03 July 2025

    Abstract In the era of big data, the growing number of real-time data streams often contains a lot of sensitive privacy information. Releasing or sharing this data directly without processing will lead to serious privacy information leakage. This poses a great challenge to conventional privacy protection mechanisms (CPPM). The existing data partitioning methods ignore the number of data replications and information exchanges, resulting in complex distance calculations and inefficient indexing for high-dimensional data. Therefore, CPPM often fails to meet the stringent requirements of efficiency and reliability, especially in dynamic spatiotemporal environments. Addressing this concern, we proposed… More >

  • Open Access

    ARTICLE

    2P3FL: A Novel Approach for Privacy Preserving in Financial Sectors Using Flower Federated Learning

    Sandeep Dasari, Rajesh Kaluri*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 2035-2051, 2024, DOI:10.32604/cmes.2024.049152 - 20 May 2024

    Abstract The increasing data pool in finance sectors forces machine learning (ML) to step into new complications. Banking data has significant financial implications and is confidential. Combining users data from several organizations for various banking services may result in various intrusions and privacy leakages. As a result, this study employs federated learning (FL) using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global model. However, diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of privacy. To address this issue, the… More > Graphic Abstract

    2P3FL: A Novel Approach for Privacy Preserving in Financial Sectors Using Flower Federated Learning

  • Open Access

    ARTICLE

    A Cloud-Fog Enabled and Privacy-Preserving IoT Data Market Platform Based on Blockchain

    Yurong Luo, Wei You*, Chao Shang, Xiongpeng Ren, Jin Cao, Hui Li

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2237-2260, 2024, DOI:10.32604/cmes.2023.045679 - 29 January 2024

    Abstract The dynamic landscape of the Internet of Things (IoT) is set to revolutionize the pace of interaction among entities, ushering in a proliferation of applications characterized by heightened quality and diversity. Among the pivotal applications within the realm of IoT, as a significant example, the Smart Grid (SG) evolves into intricate networks of energy deployment marked by data integration. This evolution concurrently entails data interchange with other IoT entities. However, there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem. In this paper, we introduce a More >

  • Open Access

    ARTICLE

    Chest Radiographs Based Pneumothorax Detection Using Federated Learning

    Ahmad Almadhor1,*, Arfat Ahmad Khan2, Chitapong Wechtaisong3,*, Iqra Yousaf4, Natalia Kryvinska5, Usman Tariq6, Haithem Ben Chikha1

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1775-1791, 2023, DOI:10.32604/csse.2023.039007 - 28 July 2023

    Abstract Pneumothorax is a thoracic condition that occurs when a person’s lungs collapse, causing air to enter the pleural cavity, the area close to the lungs and chest wall. The most persistent disease, as well as one that necessitates particular patient care and the privacy of their health records. The radiologists find it challenging to diagnose pneumothorax due to the variations in images. Deep learning-based techniques are commonly employed to solve image categorization and segmentation problems. However, it is challenging to employ it in the medical field due to privacy issues and a lack of data.… More >

  • Open Access

    ARTICLE

    DeepGan-Privacy Preserving of HealthCare System Using DL

    Sultan Mesfer Aldossary*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2199-2212, 2023, DOI:10.32604/iasc.2023.038243 - 21 June 2023

    Abstract The challenge of encrypting sensitive information of a medical image in a healthcare system is still one that requires a high level of computing complexity, despite the ongoing development of cryptography. After looking through the previous research, it has become clear that the security issues still need to be looked into further because there is room for expansion in the research field. Recently, neural networks have emerged as a cost-effective and effective optimization strategy in terms of providing security for images. This revelation came about as a result of current developments. Nevertheless, such an implementation… More >

  • Open Access

    ARTICLE

    An Adaptive Privacy Preserving Framework for Distributed Association Rule Mining in Healthcare Databases

    Hasanien K. Kuba1, Mustafa A. Azzawi2, Saad M. Darwish3,*, Oday A. Hassen4, Ansam A. Abdulhussein5

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4119-4133, 2023, DOI:10.32604/cmc.2023.033182 - 31 October 2022

    Abstract It is crucial, while using healthcare data, to assess the advantages of data privacy against the possible drawbacks. Data from several sources must be combined for use in many data mining applications. The medical practitioner may use the results of association rule mining performed on this aggregated data to better personalize patient care and implement preventive measures. Historically, numerous heuristics (e.g., greedy search) and metaheuristics-based techniques (e.g., evolutionary algorithm) have been created for the positive association rule in privacy preserving data mining (PPDM). When it comes to connecting seemingly unrelated diseases and drugs, negative association… More >

  • Open Access

    ARTICLE

    Integrated Privacy Preserving Healthcare System Using Posture-Based Classifier in Cloud

    C. Santhosh Kumar1, K. Vishnu Kumar2,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2893-2907, 2023, DOI:10.32604/iasc.2023.029669 - 17 August 2022

    Abstract Privacy-preserving online disease prediction and diagnosis are critical issues in the emerging edge-cloud-based healthcare system. Online patient data processing from remote places may lead to severe privacy problems. Moreover, the existing cloud-based healthcare system takes more latency and energy consumption during diagnosis due to offloading of live patient data to remote cloud servers. Solve the privacy problem. The proposed research introduces the edge-cloud enabled privacy-preserving healthcare system by exploiting additive homomorphic encryption schemes. It can help maintain the privacy preservation and confidentiality of patients’ medical data during diagnosis of Parkinson’s disease. In addition, the energy More >

  • Open Access

    ARTICLE

    Evaluating Partitioning Based Clustering Methods for Extended Non-negative Matrix Factorization (NMF)

    Neetika Bhandari1,*, Payal Pahwa2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2043-2055, 2023, DOI:10.32604/iasc.2023.028368 - 19 July 2022

    Abstract Data is humongous today because of the extensive use of World Wide Web, Social Media and Intelligent Systems. This data can be very important and useful if it is harnessed carefully and correctly. Useful information can be extracted from this massive data using the Data Mining process. The information extracted can be used to make vital decisions in various industries. Clustering is a very popular Data Mining method which divides the data points into different groups such that all similar data points form a part of the same group. Clustering methods are of various types. More >

Displaying 1-10 on page 1 of 24. Per Page