Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Numerical Analysis of the Hydrodynamic Behavior of a Remotely Operated Vehicle in Multi-Directional Flow

    Hongfei Cao1,2, Zhongda Lyu1,2,3,*, Xi Peng2,3, Zhuo Zhao2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2361-2384, 2023, DOI:10.32604/fdmp.2023.027470

    Abstract In recent years, Remotely Operated Vehicles (ROVs) have played an increasingly important role in the construction and monitoring of underwater pile foundations. However, due to the open frame structure of such vehicles, a gap of knowledge still exists with regard to their hydrodynamic behavior. In this study, the hydrodynamic stability of such vehicles is investigated numerically by means of a multiple reference frame method. The hydrodynamic characteristics of the ROV when it moves horizontally and upward in the vertical plane are examined. It is found that there is interference between the horizontal and vertical thrusters of the ROV. There is… More >

  • Open Access

    ARTICLE

    Hybrid Energy Storage to Control and Optimize Electric Propulsion Systems

    Sikander Hans1, Smarajit Ghosh1, Suman Bhullar1, Aman Kataria2, Vinod Karar2,*, Divya Agrawal2

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 6183-6200, 2022, DOI:10.32604/cmc.2022.020768

    Abstract Today, ship development has concentrated on electrifying ships in commercial and military applications to improve efficiency, support high-power missile systems and reduce emissions. However, the electric propulsion of the shipboard system experiences torque fluctuation, thrust, and power due to the rotation of the propeller shaft and the motion of waves. In order to meet these challenges, a new solution is needed. This paper explores hybrid energy management systems using the battery and ultracapacitor to control and optimize the electric propulsion system. The battery type and ultracapacitor are ZEBRA and MAXWELL, respectively. The 3-, 4-and 5-blade propellers are considered to produce… More >

  • Open Access

    ARTICLE

    Discussion of the Fluid Acceleration Quality of a Ducted Propulsion System on the Propulsive Performance

    Jui-Hsiang Kao*, Yi-Fan Liao

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1325-1348, 2022, DOI:10.32604/cmes.2022.016212

    Abstract This paper focuses on the ducted propulsion with the accelerating nozzle, and discusses the influence of its fluid acceleration quality on its propulsive performances, including the hull efficiency, the relative rotative efficiency, the effective wake, and the thrust deduction factor. An actual ducted propulsion system is used as an example for computational analysis. The computational conditions are divided into four combinations, which are provided with different propeller pitches, cambers, and duct lengths. The method applied in this study is the Computational Fluid Dynamics (CFD) technology, and the contents of the calculation include the hull's viscous resistance, the wave-making resistance, the… More >

  • Open Access

    ARTICLE

    Computation of Aerodynamic Noise Radiated From Open Propeller Using Boundary Element Method

    Jun Huang1,2, Chaopu Zhang1, Song Xiang2, Liu Yang1, Mingxu Yi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.5, pp. 315-330, 2015, DOI:10.3970/cmes.2015.108.315

    Abstract In order to accurately predict the aerodynamic noise of the propeller, a hybrid method combining Computational Fluid Dynamics (CFD) method with Boundary Element Method (BEM) is developed in this paper. The calculation includes two steps: firstly, the unsteady viscous flow around the propeller is calculated using the CFD method to acquire the noise source information; secondly, the radiated sound pressure is calculated using BEM method in the frequency domain. In comparison with the experimental results from wind tunnel, the calculated results of aerodynamic performance are rather desirable. The simulation and experimental results of aerodynamic noise are well fitted. The directivity… More >

  • Open Access

    ARTICLE

    A Numerical Variational Approach for Rotor-Propeller Aerodynamics in Axial Flight

    F. Simonetti1, R. M. Ardito Marretta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.3, pp. 81-90, 2000, DOI:10.3970/cmes.2000.001.383

    Abstract Advanced propellers are being developed to improve the performance and fuel economy of future transport aircraft. To study them, various aerodynamic prediction models and systems (from theory to experiment) have been developed via several approaches (Free Wake Analysis, helicoidal source methods, scale model tests). This study focuses on the development of an efficient numerical method to predict the behaviour of rotor or propeller in forward flight. Based on a variational approach, the present numerical technique allows a significant reduction of computer resources used in the calculation of instantaneous velocities to determine the wake geometry and the three-dimensional vortex flow streaming… More >

Displaying 1-10 on page 1 of 5. Per Page