Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access


    Proteomic Profiling and Protein-Protein Interaction Network Reveal the Molecular Mechanisms of Susceptibility to Drought Stress in Canola (Brassica napus L.)

    Reza Shokri-Gharelo1, Ali Bandehagh1,*, Mohammad Anwar Hossain2,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1403-1417, 2022, DOI:10.32604/phyton.2022.020431

    Abstract Drought stress is one of the most important abiotic stresses that plants face frequently in nature. Under drought conditions, many morphological, physiological, and molecular aspects of plants are changed and as a result plants experience a remarkable reduction in growth, yield, and reproduction. To expand our understanding of the molecular basis of the plant response to drought stress, the proteomic profile and protein-protein network of canola (Brassica napus L.) were studied. The focus was to show molecular mechanisms related to canola susceptibility to drought stress. The experiment used a completely randomized design, implemented in a hydroponic… More >

  • Open Access


    Proteomics Analysis of Soybean Seedlings under Short-Term Water Deficit

    Xiyue Wang, Zihao Wu, Chao Yan, Chunmei Ma, Shoukun Dong*

    Phyton-International Journal of Experimental Botany, Vol.91, No.7, pp. 1381-1401, 2022, DOI:10.32604/phyton.2022.020251

    Abstract Soybeans are one of the most important grain crops worldwide. Water deficit, which seriously affects the yield and quality of soybeans, is the main abiotic stress factor in soybean production. As a follow-up study, the droughttolerant soybean variant Heinong 44 was analyzed via proteome analysis. Soybean was exposed to water deficit for 0, 8, and 24 h, and protein samples were extracted for detection of differentially expressed proteins. Protein sequencing of leaf tissues under water stress yielded a total of 549 differentially expressed proteins: 75 and 320 upregulated proteins as well as 70 and 84 More >

  • Open Access


    Proteomic Analysis of High Temperature Stress-Responsive Proteins in Chrysanthemum Leaves

    Xin Li, Feiya Liao, Qiqi Ma, Beibei Jiang*, Yuanzhi Pan, Cheng Luo, Xinjie Wang, Aining Ran

    Phyton-International Journal of Experimental Botany, Vol.90, No.5, pp. 1415-1423, 2021, DOI:10.32604/phyton.2021.016143

    Abstract Chrysanthemum is one of the most important ornamental flowers in the world, and temperature has a significant influence on its field production. In the present study, differentially expressed proteins were investigated in the leaves of Dendranthema grandiflorum ‘Jinba’ under high temperature stress using label-free quantitative proteomics techniques. The expressed proteins were comparatively identified and analyzed. A total of 1,463 heat-related, differentially expressed proteins were successfully identified by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS), and 1,463 heat-related, differentially expressed proteins were successfully identified by mass spectrometry after a high temperature treatment. Among these, 701 proteins were upregulated and… More >

  • Open Access


    Quantitative Proteomics Analysis Identifies the Potential Mechanism Underlying Yellow-Green Leave Mutant in Wheat

    Wei Zheng, Zheng Shi, Mei Long, Yuncheng Liao*

    Phyton-International Journal of Experimental Botany, Vol.90, No.4, pp. 1147-1159, 2021, DOI:10.32604/phyton.2021.015916

    Abstract Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding. However, the molecular basis underlying high photosynthesis efficiency is not well understood up to now. In this study, we investigated the protein expression profile of wheat Jimai5265yg mutant, which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency. Though TMT-labeling quantitative proteomics analysis, a total of 72 differential expressed proteins (DEPs) were obtained between the mutant and wild type (WT). GO analysis found that they significantly enriched in thylakoid membrane, pigment binding, magnesium chelatase activity and response More >

  • Open Access


    Comparative proteome analysis in hot pepper (Capsicum annuum L.) after space flight

    Xie LB1, X Wang1, M Peng2, Y Zhou1, LX Chen1, LX Liu3, YL Gao1, YH Guo1

    Phyton-International Journal of Experimental Botany, Vol.86, pp. 236-245, 2017, DOI:10.32604/phyton.2017.86.236

    Abstract Hot pepper (Capsicum annuum L.) is an important crop all over the world. To explore and identify differentially expressed proteins of hot pepper after space flight, three space-induced mutants (Y1, Y2 and Y3), which obtained new traits after space flight compared with their control lines (W1 and W2), were analyzed using comparative proteome analysis. In this study, leaf morphological characteristics of five kinds of hot pepper variations were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results showed that obvious changes of cellular structure were seen in space induced mutants. Thirty nine out More >

Displaying 11-20 on page 2 of 15. Per Page