Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (256)
  • Open Access

    ARTICLE

    Implementation of opioid-reduced protocols after penile prosthesis surgery

    Luke Patrick O’Connor1, Alexander Jordan Henry2, Wendy Michelle Novicoff3, Marwan Ali2, Adam Seth Baumgarten4, Nicolas Martin Ortiz2,*

    Canadian Journal of Urology, Vol.32, No.6, pp. 621-626, 2025, DOI:10.32604/cju.2025.065217 - 30 December 2025

    Abstract Background: Postoperative pain management after penile prosthesis (PP) has traditionally required opioid medication. Recently, urologic prosthetic surgeons have sought to establish opioid-free protocols (OFP) and/or opioid-reduced protocols (ORP) for PP postoperative pain management. We sought to investigate the adoption patterns of OFP/ORP among surgeons who perform PP surgery and identify barriers to implementation. Methods: A 13-question confidential survey was sent to members of the Sexual Medicine Society of North America (SMSNA) and the Society of Urologic Prosthetic Surgeons (SUPS) via email. The survey was administered via Qualtrics. A t-test was used to analyze survey responses. Results:More >

  • Open Access

    ARTICLE

    E-AAPIV: Merkle Tree-Based Real-Time Android Manifest Integrity Verification for Mobile Payment Security

    Mostafa Mohamed Ahmed Mohamed Alsaedy1,*, Atef Zaki Ghalwash1, Aliaa Abd Elhalim Yousif2, Safaa Magdy Azzam1

    Journal of Cyber Security, Vol.7, pp. 653-674, 2025, DOI:10.32604/jcs.2025.073547 - 24 December 2025

    Abstract Mobile financial applications and payment systems face significant security challenges from reverse engineering attacks. Attackers can decompile Android Package Kit (APK) files, modify permissions, and repackage applications with malicious capabilities. This work introduces E-AAPIV (Enhanced Android Apps Permissions Integrity Verifier), an advanced framework that uses Merkle Tree technology for real-time manifest integrity verification. The proposed system constructs cryptographic Merkle Tree from AndroidManifest.xml permission structures. It establishes secure client-server connections using Elliptic Curve Diffie-Hellman Protocol (ECDH-P384) key exchange. Root hashes are encrypted with Advanced Encryption Standard-256-Galois/Counter Mode (AES-256-GCM), integrated with hardware-backed Android Keystore for enhanced security. More >

  • Open Access

    ARTICLE

    Implementation and Evaluation of the Zero-Knowledge Protocol for Identity Card Verification

    Edward Danso Ansong*, Simon Bonsu Osei*, Raphael Adjetey Adjei

    Journal of Cyber Security, Vol.7, pp. 533-564, 2025, DOI:10.32604/jcs.2025.061821 - 11 December 2025

    Abstract The surge in identity fraud, driven by the rapid adoption of mobile money, internet banking, and e-services during the COVID-19 pandemic, underscores the need for robust cybersecurity solutions. Zero-Knowledge Proofs (ZKPs) enable secure identity verification by allowing individuals to prove possession of a National ID card without revealing sensitive information. This study implements a ZKP-based identity verification system using Camenisch-Lysyanskaya (CL) signatures, reducing reliance on complex trusted setup ceremonies. While a trusted issuer is still required, as assumed in this work, our approach eliminates the need for broader system-wide trusted parameters. We evaluate the system’s More >

  • Open Access

    ARTICLE

    Outcomes and Toxicity of Adult Medulloblastoma Treated with Pediatric Multimodal Protocols: A Single-Institution Experience

    Antonio Ruggiero1,2,*, Dario Talloa1, Alberto Romano1, Giorgio Attinà1, Stefano Mastrangelo1,2, Palma Maurizi1,2, Tommaso Verdolotti3, Gianpiero Tamburrini4,5, Silvia Chiesa6, Rina di Bonaventura7, Pier Paolo Mattogno7, Alessandro Olivi7,8, Alessio Albanese7,8

    Oncology Research, Vol.33, No.12, pp. 3855-3867, 2025, DOI:10.32604/or.2025.067948 - 27 November 2025

    Abstract Background: Adult medulloblastoma (MB) represents less than 1% of central nervous system malignancies, lacking standardized therapeutic approaches due to its rarity. This retrospective single-center analysis aimed to assess survival outcomes and treatment-associated toxicities in adult MB patients managed with pediatric-derived protocols. Methods: Eighteen patients (≥18 years) with MB treated at Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) (January 1997–January 2024) were analyzed. All received craniospinal radiotherapy with posterior fossa boost, followed by adjuvant chemotherapy utilizing pediatric regimens (PNET3, PNET4, PNET5, or high-risk protocols incorporating high-dose chemotherapy with autologous… More >

  • Open Access

    ARTICLE

    3RVAV: A Three-Round Voting and Proof-of-Stake Consensus Protocol with Provable Byzantine Fault Tolerance

    Abeer S. Al-Humaimeedy*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5207-5236, 2025, DOI:10.32604/cmc.2025.068273 - 23 October 2025

    Abstract This paper presents 3RVAV (Three-Round Voting with Advanced Validation), a novel Byzantine Fault Tolerant consensus protocol combining Proof-of-Stake with a multi-phase voting mechanism. The protocol introduces three layers of randomized committee voting with distinct participant roles (Validators, Delegators, and Users), achieving -threshold approval per round through a verifiable random function (VRF)-based selection process. Our security analysis demonstrates 3RVAV provides resistance to Sybil attacks with participants and stake , while maintaining communication complexity. Experimental simulations show 3247 TPS throughput with 4-s finality, representing a 5.8× improvement over Algorand’s committee-based approach. The proposed protocol achieves approximately 4.2-s More >

  • Open Access

    ARTICLE

    LSAP-IoHT: Lightweight Secure Authentication Protocol for the Internet of Healthcare Things

    Marwa Ahmim1, Nour Ouafi1, Insaf Ullah2,*, Ahmed Ahmim3, Djalel Chefrour3, Reham Almukhlifi4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5093-5116, 2025, DOI:10.32604/cmc.2025.067641 - 23 October 2025

    Abstract The Internet of Healthcare Things (IoHT) marks a significant breakthrough in modern medicine by enabling a new era of healthcare services. IoHT supports real-time, continuous, and personalized monitoring of patients’ health conditions. However, the security of sensitive data exchanged within IoHT remains a major concern, as the widespread connectivity and wireless nature of these systems expose them to various vulnerabilities. Potential threats include unauthorized access, device compromise, data breaches, and data alteration, all of which may compromise the confidentiality and integrity of patient information. In this paper, we provide an in-depth security analysis of LAP-IoHT,… More >

  • Open Access

    ARTICLE

    Deep Auto-Encoder Based Intelligent and Secure Time Synchronization Protocol (iSTSP) for Security-Critical Time-Sensitive WSNs

    Ramadan Abdul-Rashid1, Mohd Amiruddin Abd Rahman1,*, Abdulaziz Yagoub Barnawi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3213-3250, 2025, DOI:10.32604/cmes.2025.066589 - 30 September 2025

    Abstract Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks (WSNs), especially in security-critical, time-sensitive applications. However, most existing protocols degrade substantially under malicious interference. We introduce iSTSP, an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust, precise synchronization even in hostile environments: (1) trust preprocessing that filters node participation using behavioral trust scoring; (2) anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time; (3) reliability-weighted consensus that prioritizes high-trust nodes during time aggregation; and (4) convergence-optimized synchronization… More >

  • Open Access

    ARTICLE

    An Efficient and Verifiable Data Aggregation Protocol with Enhanced Privacy Protection

    Yiming Zhang1, Wei Zhang1,2,*, Cong Shen3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3185-3211, 2025, DOI:10.32604/cmc.2025.067563 - 23 September 2025

    Abstract Distributed data fusion is essential for numerous applications, yet faces significant privacy security challenges. Federated learning (FL), as a distributed machine learning paradigm, offers enhanced data privacy protection and has attracted widespread attention. Consequently, research increasingly focuses on developing more secure FL techniques. However, in real-world scenarios involving malicious entities, the accuracy of FL results is often compromised, particularly due to the threat of collusion between two servers. To address this challenge, this paper proposes an efficient and verifiable data aggregation protocol with enhanced privacy protection. After analyzing attack methods against prior schemes, we implement… More >

  • Open Access

    REVIEW

    Review of Communication Protocols and Cryptographic Techniques Applied in Secure Token Transmission

    Michael Juma Ayuma1,*, Shem Mbandu Angolo1, Philemon Nthenge Kasyoka2, Simon Maina Karume3

    Journal of Cyber Security, Vol.7, pp. 307-341, 2025, DOI:10.32604/jcs.2025.067360 - 02 September 2025

    Abstract Token transmission is a fundamental component in diverse domains, including computer networks, blockchain systems, distributed architectures, financial transactions, secure communications, and identity verification. Ensuring optimal performance during transmission is essential for maintaining the efficiency of data in transit. However, persistent threats from adversarial actors continue to pose significant risks to the integrity, authenticity, and confidentiality of transmitted data. This study presents a comprehensive review of existing research on token transmission techniques, examining the roles of transmission channels, emerging trends, and the associated security and performance implications. A critical analysis is conducted to assess the strengths, More >

  • Open Access

    ARTICLE

    An Energy-Efficient Cross-Layer Clustering Approach Based on Gini Index Theory for WSNs

    Deyu Lin1,2, Yujie Zhang 2, Zhiwei Hua2, Jianfeng Xu2,3,*, Yufei Zhao1, Yong Liang Guan1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1859-1882, 2025, DOI:10.32604/cmc.2025.066283 - 29 August 2025

    Abstract Energy efficiency is critical in Wireless Sensor Networks (WSNs) due to the limited power supply. While clustering algorithms are commonly used to extend network lifetime, most of them focus on single-layer optimization. To this end, an Energy-efficient Cross-layer Clustering approach based on the Gini (ECCG) index theory was proposed in this paper. Specifically, a novel mechanism of Gini Index theory-based energy-efficient Cluster Head Election (GICHE) is presented based on the Gini Index and the expected energy distribution to achieve balanced energy consumption among different clusters. In addition, to improve inter-cluster energy efficiency, a Queue synchronous More >

Displaying 1-10 on page 1 of 256. Per Page