Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (210)
  • Open Access

    REVIEW

    Internet of Things Authentication Protocols: Comparative Study

    Souhayla Dargaoui1, Mourade Azrour1,*, Ahmad El Allaoui1, Azidine Guezzaz2, Abdulatif Alabdulatif3, Abdullah Alnajim4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 65-91, 2024, DOI:10.32604/cmc.2024.047625

    Abstract Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 and smart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still the biggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services provided by an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures, data, and devices. Authentication, as the first line of defense against security threats, becomes the priority of everyone. It can either grant or deny users access to resources according… More >

  • Open Access

    ARTICLE

    Chaotic Map-Based Authentication and Key Agreement Protocol with Low-Latency for Metasystem

    Guojun Wang1,2, Qi Liu3,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4471-4488, 2024, DOI:10.32604/cmc.2024.047669

    Abstract With the rapid advancement in exploring perceptual interactions and digital twins, metaverse technology has emerged to transcend the constraints of space-time and reality, facilitating remote AI-based collaboration. In this dynamic metasystem environment, frequent information exchanges necessitate robust security measures, with Authentication and Key Agreement (AKA) serving as the primary line of defense to ensure communication security. However, traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse. To address this challenge and enable nearly latency-free interactions, a novel low-latency AKA protocol based on chaotic maps is proposed. This protocol not only ensures mutual… More >

  • Open Access

    ARTICLE

    Falcon Optimization Algorithm-Based Energy Efficient Communication Protocol for Cluster-Based Vehicular Networks

    Youseef Alotaibi1, B. Rajasekar2, R. Jayalakshmi3, Surendran Rajendran4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4243-4262, 2024, DOI:10.32604/cmc.2024.047608

    Abstract Rapid development in Information Technology (IT) has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle (V2V) transmission. Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data. The communication occurs directly between V2V and Base Station (BS) units such as the Road Side Unit (RSU), named as a Vehicle to Infrastructure (V2I). However, the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time. Therefore, the scheme of an effectual routing protocol for reliable and stable communications is significant. Current research demonstrates… More >

  • Open Access

    ARTICLE

    A Holistic Secure Communication Mechanism Using a Multilayered Cryptographic Protocol to Enhanced Security

    Fauziyah1, Zhaoshun Wang1,*, Mujahid Tabassum2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4417-4452, 2024, DOI:10.32604/cmc.2024.046797

    Abstract In an era characterized by digital pervasiveness and rapidly expanding datasets, ensuring the integrity and reliability of information is paramount. As cyber threats evolve in complexity, traditional cryptographic methods face increasingly sophisticated challenges. This article initiates an exploration into these challenges, focusing on key exchanges (encompassing their variety and subtleties), scalability, and the time metrics associated with various cryptographic processes. We propose a novel cryptographic approach underpinned by theoretical frameworks and practical engineering. Central to this approach is a thorough analysis of the interplay between Confidentiality and Integrity, foundational pillars of information security. Our method employs a phased strategy, beginning… More >

  • Open Access

    ARTICLE

    Priority Based Energy Efficient MAC Protocol by Varying Data Rate for Wireless Body Area Network

    R. Sangeetha, Usha Devi Gandhi*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 395-411, 2024, DOI:10.32604/csse.2023.041217

    Abstract Wireless Body Area Network (WBAN) is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body. WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature, blood pressure, pulse rate, oxygen level, body motion, and so on. They sense the data and communicate it to the Body Area Network (BAN) Coordinator. The main challenge for the WBAN is energy consumption. These issues can be addressed by implementing an effective Medium Access Control (MAC) protocol that reduces energy consumption and increases network lifetime. The purpose of… More >

  • Open Access

    ARTICLE

    Secure and Reliable Routing in the Internet of Vehicles Network: AODV-RL with BHA Attack Defense

    Nadeem Ahmed1,*, Khalid Mohammadani2, Ali Kashif Bashir3,4,5, Marwan Omar6, Angel Jones7, Fayaz Hassan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 633-659, 2024, DOI:10.32604/cmes.2023.031342

    Abstract Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles (IoV). However, intricate security challenges are intertwined with technological progress: Vehicular ad hoc Networks (VANETs), a core component of IoV, face security issues, particularly the Black Hole Attack (BHA). This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability; also, BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether. Recognizing the importance of this challenge, we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor (AODV-RL). The significance of… More >

  • Open Access

    ARTICLE

    A Formal Model for Analyzing Fair Exchange Protocols Based on Event Logic

    Ke Yang1, Meihua Xiao2,*, Zehuan Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2641-2663, 2024, DOI:10.32604/cmes.2023.031458

    Abstract Fair exchange protocols play a critical role in enabling two distrustful entities to conduct electronic data exchanges in a fair and secure manner. These protocols are widely used in electronic payment systems and electronic contract signing, ensuring the reliability and security of network transactions. In order to address the limitations of current research methods and enhance the analytical capabilities for fair exchange protocols, this paper proposes a formal model for analyzing such protocols. The proposed model begins with a thorough analysis of fair exchange protocols, followed by the formal definition of fairness. This definition accurately captures the inherent requirements of… More >

  • Open Access

    ARTICLE

    A Protocol for Conversion of Path-Spin to Spin-Spin Quantum Entanglement

    Indranil Bayal1, Pradipta Panchadhyayee1,2,*

    Journal of Quantum Computing, Vol.5, pp. 71-79, 2023, DOI:10.32604/jqc.2023.045164

    Abstract The present model deals with a protocol which involves the generation and conversion of entanglement from path-spin (P-S) hybrid entanglement associated with half-spin particle to spin-spin (S-S) interparticle entanglement. This protocol finds its applications in quantum information processing via a series of operations which include a beam splitter, spin flipper, spin measurement, classical channel, unitary transformations. Finally, it leads to two particles having completely entangled spin variables, without any requirement of any simultaneous operation on the two particles. More >

  • Open Access

    ARTICLE

    “Half of the Node Records Are Forged?”: The Problem of Node Records Forgery in Ethereum Network

    Yang Liu1,2,*, Zhiyuan Lin1, Yuxi Zhang1, Lin Jiang1,*, Xuan Wang1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1713-1729, 2024, DOI:10.32604/cmes.2023.030468

    Abstract Ethereum, currently the most widely utilized smart contracts platform, anchors the security of myriad smart contracts upon its own robustness. Its foundational peer-to-peer network facilitates a dependable node connection mechanism, whereas an efficient data-sharing protocol constitutes as the bedrock of Blockchain network security. In this paper, we propose NodeHunter, an Ethereum network detector implemented through the application of simulation technology, which is capable of aggregating all node records within the network and the interconnectedness between them. Utilizing this connection information, NodeHunter can procure more comprehensive insights for network status analysis compared to preceding detection methodologies. Throughout a three-month period of… More >

  • Open Access

    ARTICLE

    Unweighted Voting Method to Detect Sinkhole Attack in RPL-Based Internet of Things Networks

    Shadi Al-Sarawi1, Mohammed Anbar1,*, Basim Ahmad Alabsi2, Mohammad Adnan Aladaileh3, Shaza Dawood Ahmed Rihan2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 491-515, 2023, DOI:10.32604/cmc.2023.041108

    Abstract The Internet of Things (IoT) consists of interconnected smart devices communicating and collecting data. The Routing Protocol for Low-Power and Lossy Networks (RPL) is the standard protocol for Internet Protocol Version 6 (IPv6) in the IoT. However, RPL is vulnerable to various attacks, including the sinkhole attack, which disrupts the network by manipulating routing information. This paper proposes the Unweighted Voting Method (UVM) for sinkhole node identification, utilizing three key behavioral indicators: DODAG Information Object (DIO) Transaction Frequency, Rank Harmony, and Power Consumption. These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant… More >

Displaying 1-10 on page 1 of 210. Per Page