Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (121)
  • Open Access

    ARTICLE

    Topological Shape Optimization of Electromagnetic Problems using Level Set Method and Radial Basis Function

    Hokyung Shim1, Vinh Thuy Tran Ho1,,Semyung Wang1,2, Daniel A. Tortorelli3

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.2, pp. 175-202, 2008, DOI:10.3970/cmes.2008.037.175

    Abstract This paper presents a topological shape optimization technique for electromagnetic problems using a level set method and radial basis functions. The proposed technique is a level set (LS) based optimization dealing with geometrical shape derivatives and topological design. The shape derivative is computed by an adjoint variable method to avoid numerous sensitivity evaluations. A level set model embedded into the scalar function of higher dimensions is propagated to represent the design boundary of a domain. The level set function interpolated into a fixed initial domain is evolved by using the Hamilton-Jacobi equation. The moving free boundaries (dynamic interfaces) represented in… More >

  • Open Access

    ARTICLE

    Accurate MLPG Solution of 3D Potential Problems

    Giorgio Pini1, Annamaria Mazzia1, Flavio Sartoretto2,

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.1, pp. 43-64, 2008, DOI:10.3970/cmes.2008.036.043

    Abstract Meshless methods have been explored in many 2D problems and they have been shown to be as accurate as Finite Element Methods (FEM). Compared to the extensive literature on 2D applications, papers on solving 3D problems by meshless methods are surprisingly few. Indeed, a main drawback of these methods is the requirement for accurate cubature rules. This paper focuses on the so called Meshless Local Petrov Galerkin (MLPG) methods. We show that accurate solutions of 3D potential problems can be attained, provided suitable cubature rules are identified, sparse data structures are efficiently stored, and strategies are devised in order to… More >

  • Open Access

    ARTICLE

    Performance of Multiquadric Collocation Method in Solving Lid-driven Cavity Flow Problem with Low Reynolds Number

    S. Chantasiriwan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 137-146, 2006, DOI:10.3970/cmes.2006.015.137

    Abstract The multiquadric collocation method is the collocation method based on radial basis function known as multiquadrics. It has been successfully used to solve several linear and nonlinear problems. Although fluid flow problems are among problems previously solved by this method, there is still an outstanding issue regarding the influence of the free parameter of multiquadrics (or the shape parameter) on the performance of the method. This paper provides additional results of using the multiquadric collocation method to solve the lid-driven cavity flow problem. The method is used to solve the problem in the stream function-vorticity formulation and the velocity-vorticity formulation.… More >

  • Open Access

    ARTICLE

    Structural Shape and Topology Optimization Using an Implicit Free Boundary Parametrization Method

    S.Y. Wang1,2, M.Y. Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.2, pp. 119-148, 2006, DOI:10.3970/cmes.2006.013.119

    Abstract In this paper, an implicit free boundary parametrization method is presented as an effective approach for simultaneous shape and topology optimization of structures. The moving free boundary of a structure is embedded as a zero level set of a higher dimensional implicit level set function. The radial basis functions (RBFs) are introduced to parametrize the implicit function with a high level of accuracy and smoothness. The motion of the free boundary is thus governed by a mathematically more convenient ordinary differential equation (ODE). Eigenvalue stability can be guaranteed due to the use of inverse multiquadric RBF splines. To perform both… More >

  • Open Access

    ARTICLE

    A Continuum-Microscopic Method Based on IRBFs and Control Volume Scheme for Viscoelastic Fluid Flows

    C.-D. Tran1, N. Mai-Duy1,1, K. Le-Cao1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.6, pp. 499-520, 2012, DOI:10.3970/cmes.2012.085.499

    Abstract A numerical computation of continuum-microscopic model for visco-elastic flows based on the Integrated Radial Basis Function (IRBF) Control Volume and the Stochastic Simulation Techniques (SST) is reported in this paper. The macroscopic flow equations are closed by a stochastic equation for the extra stress at the microscopic level. The former are discretised by a 1D-IRBF-CV method while the latter is integrated with Euler explicit or Predictor-Corrector schemes. Modelling is very efficient as it is based on Cartesian grid, while the integrated RBF approach enhances both the stability of the procedure and the accuracy of the solution. The proposed method is… More >

  • Open Access

    ARTICLE

    A High-order Compact Local Integrated-RBF Scheme for Steady-state Incompressible Viscous Flows in the Primitive Variables

    N. Thai-Quang1, K. Le-Cao1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 528-558, 2012, DOI:10.3970/cmes.2012.084.528

    Abstract This study is concerned with the development of integrated radial-basis-function (IRBF) method for the simulation of two-dimensional steady-state incompressible viscous flows governed by the pressure-velocity formulation on Cartesian grids. Instead of using low-order polynomial interpolants, a high-order compact local IRBF scheme is employed to represent the convection and diffusion terms. Furthermore, an effective boundary treatment for the pressure variable, where Neumann boundary conditions are transformed into Dirichlet ones, is proposed. This transformation is based on global 1D-IRBF approximators using values of the pressure at interior nodes along a grid line and first-order derivative values of the pressure at the two… More >

  • Open Access

    ARTICLE

    Numerical Solutions of the Symmetric Regularized Long Wave Equation Using Radial Basis Functions

    Ayşe Gül Kaplan1, Yılmaz Dereli

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.5, pp. 423-438, 2012, DOI:10.3970/cmes.2012.084.423

    Abstract In this study, the nonlinear symmetric regularized long wave equation was solved numerically by using radial basis functions collocation method. The single solitary wave solution, the interaction of two positive solitary waves and the clash of two solitary waves were studied. Numerical results and simulations of the wave motions were presented. Validity and accuracy of the method was tested by compared with results in the literature. More >

  • Open Access

    ARTICLE

    A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation

    Ali Shokri1, Mehdi Dehghan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.4, pp. 333-358, 2012, DOI:10.3970/cmes.2012.084.333

    Abstract The Ginzburg-Landau equation has been used as a mathematical model for various pattern formation systems in mechanics, physics and chemistry. In this paper, we study the complex Ginzburg-Landau equation in two spatial dimensions with periodical boundary conditions. The method numerically approximates the solution by collocation method based on radial basis functions (RBFs). To improve the numerical results we use a predictor-corrector scheme. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the accuracy and efficiency of the presented method. More >

  • Open Access

    ARTICLE

    Several Compact Local Stencils based on Integrated RBFs for Fourth-Order ODEs and PDEs

    T.-T. Hoang-Trieu1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.2, pp. 171-204, 2012, DOI:10.3970/cmes.2012.084.171

    Abstract In this paper, new compact local stencils based on integrated radial basis functions (IRBFs) for solving fourth-order ordinary differential equations (ODEs) and partial differential equations (PDEs) are presented. Five types of compact stencils - 3-node and 5-node for 1D problems and 5×5-node, 13-node and 3×3 -node for 2D problems - are implemented. In the case of 3-node stencil and 3×3-node stencil, nodal values of the first derivative(s) of the field variable are treated as additional unknowns (i.e. 2 unknowns per node for 3-node stencil and 3 unknowns per node for 3×3-node stencil). The integration constants arising from the construction of… More >

  • Open Access

    ARTICLE

    High-Performance 3D Hybrid/Mixed, and Simple 3D Voronoi Cell Finite Elements, for Macro- & Micro-mechanical Modeling of Solids, Without Using Multi-field Variational Principles

    P. L. Bishay1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.1, pp. 41-98, 2012, DOI:10.3970/cmes.2012.084.041

    Abstract Higher-order two-dimensional as well as low and higher-order three-dimensional new Hybrid/Mixed (H/M) finite elements based on independently assumed displacement, and judiciously chosen strain fields, denoted by HMFEM-2, are developed here for applications in macro-mechanics. The idea of these new H/M finite elements is based on collocating the components of the independent strain field, with those derived from the independently assumed displacement fields at judiciously and cleverly chosen collocation points inside the element. This is unlike the other techniques used in older H/M finite elements where a two-field variational principle was used in order to enforce both equilibrium and compatibility conditions… More >

Displaying 71-80 on page 8 of 121. Per Page