Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,110)
  • Open Access

    ARTICLE

    Machine Learning-Driven Prediction of the Glass Transition Temperature of Styrene-Butadiene Rubber

    Zhanglei Wang1,2, Shuo Yan1,2, Jingyu Gao1,2, Haoyu Wu1,2, Baili Wang1,2, Xiuying Zhao1,2,*, Shikai Hu1,2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075667 - 10 February 2026

    Abstract The glass transition temperature (Tg) of styrene-butadiene rubber (SBR) is a key parameter determining its low-temperature flexibility and processing performance. Accurate prediction of Tg is crucial for material design and application optimisation. Addressing the limitations of traditional experimental measurements and theoretical models in terms of efficiency, cost, and accuracy, this study proposes a machine learning prediction framework that integrates multi-model ensemble and Bayesian optimization by constructing a multi-component feature dataset and algorithm optimization strategy. Based on the constructed high-quality dataset containing 96 SBR samples, nine machine learning models were employed to predict the Tg of SBR and… More >

  • Open Access

    ARTICLE

    Robust and Efficient Federated Learning for Machinery Fault Diagnosis in Internet of Things

    Zhen Wu1,2, Hao Liu3, Linlin Zhang4, Zehui Zhang5,*, Jie Wu1, Haibin He1, Bin Zhou6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075156 - 10 February 2026

    Abstract Recently, Internet of Things (IoT) has been increasingly integrated into the automotive sector, enabling the development of diverse applications such as the Internet of Vehicles (IoV) and intelligent connected vehicles. Leveraging IoV technologies, operational data from core vehicle components can be collected and analyzed to construct fault diagnosis models, thereby enhancing vehicle safety. However, automakers often struggle to acquire sufficient fault data to support effective model training. To address this challenge, a robust and efficient federated learning method (REFL) is constructed for machinery fault diagnosis in collaborative IoV, which can organize multiple companies to collaboratively More >

  • Open Access

    ARTICLE

    An Overall Optimization Model Using Metaheuristic Algorithms for the CNN-Based IoT Attack Detection Problem

    Le Thi Hong Van1,*, Le Duc Thuan1, Pham Van Huong1, Nguyen Hieu Minh2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075027 - 10 February 2026

    Abstract Optimizing convolutional neural networks (CNNs) for IoT attack detection remains a critical yet challenging task due to the need to balance multiple performance metrics beyond mere accuracy. This study proposes a unified and flexible optimization framework that leverages metaheuristic algorithms to automatically optimize CNN configurations for IoT attack detection. Unlike conventional single-objective approaches, the proposed method formulates a global multi-objective fitness function that integrates accuracy, precision, recall, and model size (speed/model complexity penalty) with adjustable weights. This design enables both single-objective and weighted-sum multi-objective optimization, allowing adaptive selection of optimal CNN configurations for diverse deployment… More >

  • Open Access

    ARTICLE

    TeachSecure-CTI: Adaptive Cybersecurity Curriculum Generation Using Threat Dynamics and AI

    Alaa Tolah*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074997 - 10 February 2026

    Abstract The rapidly evolving cybersecurity threat landscape exposes a critical flaw in traditional educational programs where static curricula cannot adapt swiftly to novel attack vectors. This creates a significant gap between theoretical knowledge and the practical defensive capabilities needed in the field. To address this, we propose TeachSecure-CTI, a novel framework for adaptive cybersecurity curriculum generation that integrates real-time Cyber Threat Intelligence (CTI) with AI-driven personalization. Our framework employs a layered architecture featuring a CTI ingestion and clustering module, natural language processing for semantic concept extraction, and a reinforcement learning agent for adaptive content sequencing. By… More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Machine and Deep Learning for Cyberattack Detection in IoT Networks

    Enzo Hoummady*, Fehmi Jaafar

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074897 - 10 February 2026

    Abstract With the proliferation of Internet of Things (IoT) devices, securing these interconnected systems against cyberattacks has become a critical challenge. Traditional security paradigms often fail to cope with the scale and diversity of IoT network traffic. This paper presents a comparative benchmark of classic machine learning (ML) and state-of-the-art deep learning (DL) algorithms for IoT intrusion detection. Our methodology employs a two-phased approach: a preliminary pilot study using a custom-generated dataset to establish baselines, followed by a comprehensive evaluation on the large-scale CICIoTDataset2023. We benchmarked algorithms including Random Forest, XGBoost, CNN, and Stacked LSTM. The… More >

  • Open Access

    ARTICLE

    HMA-DER: A Hierarchical Attention and Expert Routing Framework for Accurate Gastrointestinal Disease Diagnosis

    Sara Tehsin1, Inzamam Mashood Nasir1,*, Wiem Abdelbaki2, Fadwa Alrowais3, Khalid A. Alattas4, Sultan Almutairi5, Radwa Marzouk6

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074416 - 10 February 2026

    Abstract Objective: Deep learning is employed increasingly in Gastroenterology (GI) endoscopy computer-aided diagnostics for polyp segmentation and multi-class disease detection. In the real world, implementation requires high accuracy, therapeutically relevant explanations, strong calibration, domain generalization, and efficiency. Current Convolutional Neural Network (CNN) and transformer models compromise border precision and global context, generate attention maps that fail to align with expert reasoning, deteriorate during cross-center changes, and exhibit inadequate calibration, hence diminishing clinical trust. Methods: HMA-DER is a hierarchical multi-attention architecture that uses dilation-enhanced residual blocks and an explainability-aware Cognitive Alignment Score (CAS) regularizer to directly align… More >

  • Open Access

    ARTICLE

    Detecting and Mitigating Cyberattacks on Load Frequency Control with Battery Energy Storage System

    Yunhao Yu1, Fuhua Luo1, Zhenyong Zhang2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074277 - 10 February 2026

    Abstract This paper investigates the detection and mitigation of coordinated cyberattacks on Load Frequency Control (LFC) systems integrated with Battery Energy Storage Systems (BESS). As renewable energy sources gain greater penetration, power grids are becoming increasingly vulnerable to cyber threats, potentially leading to frequency instability and widespread disruptions. We model two significant attack vectors: load-altering attacks (LAAs) and false data injection attacks (FDIAs) that corrupt frequency measurements. These are analyzed for their impact on grid frequency stability in both linear and nonlinear LFC models, incorporating generation rate constraints and nonlinear loads. A coordinated attack strategy is… More >

  • Open Access

    REVIEW

    A Comprehensive Literature Review on YOLO-Based Small Object Detection: Methods, Challenges, and Future Trends

    Hui Yu1, Jun Liu1,*, Mingwei Lin2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074191 - 10 February 2026

    Abstract Small object detection has been a focus of attention since the emergence of deep learning-based object detection. Although classical object detection frameworks have made significant contributions to the development of object detection, there are still many issues to be resolved in detecting small objects due to the inherent complexity and diversity of real-world visual scenes. In particular, the YOLO (You Only Look Once) series of detection models, renowned for their real-time performance, have undergone numerous adaptations aimed at improving the detection of small targets. In this survey, we summarize the state-of-the-art YOLO-based small object detection More >

  • Open Access

    REVIEW

    Prompt Injection Attacks on Large Language Models: A Survey of Attack Methods, Root Causes, and Defense Strategies

    Tongcheng Geng1,#, Zhiyuan Xu2,#, Yubin Qu3,*, W. Eric Wong4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074081 - 10 February 2026

    Abstract Large language models (LLMs) have revolutionized AI applications across diverse domains. However, their widespread deployment has introduced critical security vulnerabilities, particularly prompt injection attacks that manipulate model behavior through malicious instructions. Following Kitchenham’s guidelines, this systematic review synthesizes 128 peer-reviewed studies from 2022 to 2025 to provide a unified understanding of this rapidly evolving threat landscape. Our findings reveal a swift progression from simple direct injections to sophisticated multimodal attacks, achieving over 90% success rates against unprotected systems. In response, defense mechanisms show varying effectiveness: input preprocessing achieves 60%–80% detection rates and advanced architectural defenses More >

  • Open Access

    ARTICLE

    Big Data-Driven Federated Learning Model for Scalable and Privacy-Preserving Cyber Threat Detection in IoT-Enabled Healthcare Systems

    Noura Mohammed Alaskar1, Muzammil Hussain2, Saif Jasim Almheiri1, Atta-ur-Rahman3, Adnan Khan4,5,6, Khan M. Adnan7,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074041 - 10 February 2026

    Abstract The increasing number of interconnected devices and the incorporation of smart technology into contemporary healthcare systems have significantly raised the attack surface of cyber threats. The early detection of threats is both necessary and complex, yet these interconnected healthcare settings generate enormous amounts of heterogeneous data. Traditional Intrusion Detection Systems (IDS), which are generally centralized and machine learning-based, often fail to address the rapidly changing nature of cyberattacks and are challenged by ethical concerns related to patient data privacy. Moreover, traditional AI-driven IDS usually face challenges in handling large-scale, heterogeneous healthcare data while ensuring data… More >

Displaying 1-10 on page 1 of 7110. Per Page