Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,713)
  • Open Access

    ARTICLE

    Orthogonal Tapered Beam Functions in the Study of Free Vibrations for Non-uniform Isotropic Rectangular Plates

    M.F. Liu1

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 97-128, 2011, DOI:10.3970/cmc.2011.022.097

    Abstract A new invented Orthogonal Tapered Beam Functions (OTBFs) have been introduced in this paper and used in accordance with the Rayleigh-Ritz method to determine the natural frequencies and mode shapes of the non-uniform rectangular isotropic plates with varying thickness in one or two directions. The generation of the OTBFs is based on the static solution of a one-dimensional beam problem subjected to constant applied load, and then extends to an orthogonal or orthonomal infinite set of admissible functions by performing the three-term recurrence scheme. A wide range of non-uniform rectangular plate whose domain is referenced by a so-called truncation factor… More >

  • Open Access

    ARTICLE

    Nonlinear Finite Element Analysis of RC Structures Incorporating Corrosion Effects

    Smitha Gopinath1,2, A. Ramach,ra Murthy1, Nagesh R. Iyer1

    CMC-Computers, Materials & Continua, Vol.22, No.1, pp. 55-72, 2011, DOI:10.3970/cmc.2011.022.055

    Abstract This paper presents the mathematical modeling techniques for nonlinear finite element analysis of RC structure to incorporate uniform corrosion effects. Effect of corrosion has been simulated as reduction in effective cross-sectional area of reinforcing bar, reduction in bonding phenomena and as reduction in material properties of reinforcing bar such as yield strength and elastic modulus. Appropriate constitutive laws for (i) corroded rebar elements and (ii) bond slip with corroded bar have been described. Procedure has been outlined to determine the global damage indicator by secant stiffness based approach. A corroded RC beam has been analysed to validate the proposed model… More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for Multi-Dimensional Backward Wave Problems

    Chih-Wen Chang1

    CMC-Computers, Materials & Continua, Vol.21, No.2, pp. 87-106, 2011, DOI:10.3970/cmc.2011.021.087

    Abstract We address a new numerical approach to deal with these multi-dimensional backward wave problems (BWPs) in this study. A fictitious time τ is utilized to transform the dependent variable u(x, y, z, t) into a new one by (1+τ)u(x, y, z, t)=: v(x, y, z, t, τ), such that the original wave equation is written as a new hyperbolic type partial differential equation in the space of (x, y, z, t, τ). Besides, a fictitious viscous damping coefficient can be employed to strengthen the stability of numerical integration of the discretized equations by using a group preserving scheme. Several numerical… More >

  • Open Access

    ARTICLE

    Linear Matching Method for Design Limits in Plasticity

    Haofeng Chen1

    CMC-Computers, Materials & Continua, Vol.20, No.2, pp. 159-184, 2010, DOI:10.3970/cmc.2010.020.159

    Abstract In this paper a state-of-the-art numerical method is discussed for the evaluation of the shakedown and ratchet limits for an elastic-perfectly plastic body subjected to cyclic thermal and mechanical load history. The limit load or collapse load, i.e. the load carrying capacity, is also determined as a special case of shakedown analysis. These design limits in plasticity have been solved by characterizing the steady cyclic state using a general cyclic minimum theorem. For a prescribed class of kinematically admissible inelastic strain rate histories, the minimum of the functional for these design limits are found by a programming method, the Linear… More >

  • Open Access

    ARTICLE

    Indentation Load-Displacement Relations for the Spherical Indentation of Elastic Film/Substrate Structures

    S. N.V.R.K. Kurapati1, Y. C. Lu1, F. Yang2

    CMC-Computers, Materials & Continua, Vol.20, No.1, pp. 1-18, 2010, DOI:10.3970/cmc.2010.020.001

    Abstract The spherical indentation of elastic film /substrate structures is analyzed using the finite element method. The load-displacement curves of the film /substrate structures of various configurations are obtained and analyzed. A generalized power law relation is established, which can be used to analyze the load-displacement curve of elastic film /substrate systems under spherical indentations. The indentation load is dependent on the modulus ratio of the film to the substrate and film thickness. A semi-analytical expression for the power of the power law relation is also obtained as a function of the normalized film thickness and normalized film modulus, which can… More >

  • Open Access

    ARTICLE

    A Fictitious Time Integration Method for Multi-Dimensional Backward Heat Conduction Problems

    Chih-Wen Chang1

    CMC-Computers, Materials & Continua, Vol.19, No.3, pp. 285-314, 2010, DOI:10.3970/cmc.2010.019.285

    Abstract In this article, we propose a new numerical approach for solving these multi-dimensional nonlinear and nonhomogeneous backward heat conduction problems (BHCPs). A fictitious time t is employed to transform the dependent variable u(x, y, z, t) into a new one by (1+t)u(x, y, z, t)=: v(x, y, z, t, t), such that the original nonlinear and nonhomogeneous heat conduction equation is written as a new parabolic type partial differential equation in the space of (x, y, z, t, t). In addition, a fictitious viscous damping coefficient can be used to strengthen the stability of numerical integration of the discretized equations… More >

  • Open Access

    ARTICLE

    RMVT- and PVD-Based Finite Layer Methods for the Quasi-3D Free Vibration Analysis of Multilayered Composite and FGM Plates

    Chih-Ping Wu1,2, Hao-Yuan Li2

    CMC-Computers, Materials & Continua, Vol.19, No.2, pp. 155-198, 2010, DOI:10.3970/cmc.2010.019.155

    Abstract The Reissner mixed variational theorem (RMVT)- and principle of virtual displacements (PVD)-based finite layer methods (FLMs) are developed for the quasi-three-dimensional (3D) free vibration analysis of simply-supported, multilayered composite and functionally graded material (FGM) plates. The material properties of the FGM layers are assumed to obey either an exponent-law exponentially varied with the thickness coordinate or the power-law distributions of the volume fractions of the constituents. In these formulations, the plate is divided into a number of finite layers, where the trigonometric functions and Lagrange polynomials are used to interpolate the in- and out-of-plane variations of the field variables of… More >

  • Open Access

    ARTICLE

    Application of Cosserat Theory to the Modelling of Reinforced Carbon Nananotube Beams

    Veturia Chiroiu1, Ligia Munteanu2 and Antonio S. Gliozzi3

    CMC-Computers, Materials & Continua, Vol.19, No.1, pp. 1-16, 2010, DOI:10.3970/cmc.2010.019.001

    Abstract This paper develops a mechanical model for multifunctional reinforced carbon nanotube (CNT) beams. The model is obtained by introducing the couple stresses into the constitutive equations of linear viscoelastic theory. The material functions are determined using the homogenization method. More >

  • Open Access

    ARTICLE

    Comprehensive Laminate Level Sensitivities of the Touratier Kinematic Model for Reliability Analyses and Robust Optimisation of Composite Materials and Structures

    A.J. Shaw1 and P.D. Gosling1,2

    CMC-Computers, Materials & Continua, Vol.18, No.3, pp. 237-270, 2010, DOI:10.3970/cmc.2010.018.237

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    A Lie-Group Adaptive Method for Imaging a Space-Dependent Rigidity Coefficient in an Inverse Scattering Problem of Wave Propagation

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 1-20, 2010, DOI:10.3970/cmc.2010.018.001

    Abstract We are concerned with the reconstruction of an unknown space-dependent rigidity coefficient in a wave equation. This problem is known as one of the inverse scattering problems. Based on a two-point Lie-group equation we develop a Lie-group adaptive method (LGAM) to solve this inverse scattering problem through iterations, which possesses a special character that by using onlytwo boundary conditions and two initial conditions, as those used in the direct problem, we can effectively reconstruct the unknown rigidity function by aself-adaption between the local in time differential governing equation and the global in time algebraic Lie-group equation. The accuracy and efficiency… More >

Displaying 4681-4690 on page 469 of 4713. Per Page