Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment (SORA) is applied to… More >

  • Open Access

    ARTICLE

    Contact Stress Reliability Analysis Model for Cylindrical Gear with Circular Arc Tooth Trace Based on an Improved Metamodel

    Qi Zhang1,2,4,5, Zhixin Chen3, Yang Wu4,*, Guoqi Xiang2, Guang Wen1, Xuegang Zhang2, Yongchun Xie2, Guangchun Yang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 593-619, 2024, DOI:10.32604/cmes.2023.046319

    Abstract Although there is currently no unified standard theoretical formula for calculating the contact stress of cylindrical gears with a circular arc tooth trace (referred to as CATT gear), a mathematical model for determining the contact stress of CATT gear is essential for studying how parameters affect its contact stress and building the contact stress limit state equation for contact stress reliability analysis. In this study, a mathematical relationship between design parameters and contact stress is formulated using the Kriging Metamodel. To enhance the model’s accuracy, we propose a new hybrid algorithm that merges the genetic algorithm with the Quantum Particle… More >

  • Open Access

    REVIEW

    Saddlepoint Approximation Method in Reliability Analysis: A Review

    Debiao Meng1,2,*, Yipeng Guo1,2, Yihe Xu3, Shiyuan Yang1,2,*, Yongqiang Guo4, Lidong Pan4, Xinkai Guo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2329-2359, 2024, DOI:10.32604/cmes.2024.047507

    Abstract The escalating need for reliability analysis (RA) and reliability-based design optimization (RBDO) within engineering challenges has prompted the advancement of saddlepoint approximation methods (SAM) tailored for such problems. This article offers a detailed overview of the general SAM and summarizes the method characteristics first. Subsequently, recent enhancements in the SAM theoretical framework are assessed. Notably, the mean value first-order saddlepoint approximation (MVFOSA) bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation (MVSOSA); the latter serves as an auxiliary approach to the former. Their distinction is rooted in the varying expansion orders of the performance function as… More >

  • Open Access

    ARTICLE

    On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis

    Fangyi Li*, Dachang Zhu*, Huimin Shi

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1981-1999, 2024, DOI:10.32604/cmes.2023.031332

    Abstract In time-variant reliability problems, there are a lot of uncertain variables from different sources. Therefore, it is important to consider these uncertainties in engineering. In addition, time-variant reliability problems typically involve a complex multilevel nested optimization problem, which can result in an enormous amount of computation. To this end, this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model. In this method, the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a time-independent reliability problem. Further, to solve the… More >

  • Open Access

    ARTICLE

    An Improved CREAM Model Based on DS Evidence Theory and DEMATEL

    Zhihui Xu1, Shuwen Shang2, Yuntong Pu3, Xiaoyan Su2,*, Hong Qian2, Xiaolei Pan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2597-2617, 2024, DOI:10.32604/cmes.2023.031247

    Abstract Cognitive Reliability and Error Analysis Method (CREAM) is widely used in human reliability analysis (HRA). It defines nine common performance conditions (CPCs), which represent the factors that may affect human reliability and are used to modify the cognitive failure probability (CFP). However, the levels of CPCs are usually determined by domain experts, which may be subjective and uncertain. What’s more, the classic CREAM assumes that the CPCs are independent, which is unrealistic. Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation. To address the issue… More > Graphic Abstract

    An Improved CREAM Model Based on DS Evidence Theory and DEMATEL

  • Open Access

    ARTICLE

    Assessment of Dependent Performance Shaping Factors in SPAR-H Based on Pearson Correlation Coefficient

    Xiaoyan Su1,*, Shuwen Shang1, Zhihui Xu2, Hong Qian1, Xiaolei Pan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1813-1826, 2024, DOI:10.32604/cmes.2023.030957

    Abstract With the improvement of equipment reliability, human factors have become the most uncertain part in the system. The standardized Plant Analysis of Risk-Human Reliability Analysis (SPAR-H) method is a reliable method in the field of human reliability analysis (HRA) to evaluate human reliability and assess risk in large complex systems. However, the classical SPAR-H method does not consider the dependencies among performance shaping factors (PSFs), which may cause overestimation or underestimation of the risk of the actual situation. To address this issue, this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the… More > Graphic Abstract

    Assessment of Dependent Performance Shaping Factors in SPAR-H Based on Pearson Correlation Coefficient

  • Open Access

    ARTICLE

    System Reliability Analysis Method Based on T-S FTA and HE-BN

    Qing Xia1, Yonghua Li2,*, Dongxu Zhang2, Yufeng Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1769-1794, 2024, DOI:10.32604/cmes.2023.030724

    Abstract For high-reliability systems in military, aerospace, and railway fields, the challenges of reliability analysis lie in dealing with unclear failure mechanisms, complex fault relationships, lack of fault data, and uncertainty of fault states. To overcome these problems, this paper proposes a reliability analysis method based on T-S fault tree analysis (T-S FTA) and Hyper-ellipsoidal Bayesian network (HE-BN). The method describes the connection between the various system fault events by T-S fuzzy gates and translates them into a Bayesian network (BN) model. Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation, a reliability modeling method… More >

  • Open Access

    ARTICLE

    Reliability Analysis of Correlated Competitive and Dependent Components Considering Random Isolation Times

    Shuo Cai1, Tingyu Luo1, Fei Yu1,*, Pradip Kumar Sharma2, Weizheng Wang1, Lairong Yin3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2763-2777, 2023, DOI:10.32604/cmc.2023.037825

    Abstract In the Internet of Things (IoT) system, relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency. In Body Sensor Network (BSN) systems, biosensors communicate with receiving devices through relay nodes to improve their limited energy efficiency. When the relay node fails, the biosensor can communicate directly with the receiving device by releasing more transmitting power. However, if the remaining battery power of the biosensor is insufficient to enable it to communicate directly with the receiving device, the biosensor will be isolated by the system. Therefore, a new combinatorial analysis method… More >

  • Open Access

    ARTICLE

    Reliability Analysis of HEE Parameters via Progressive Type-II Censoring with Applications

    Heba S. Mohammed1, Mazen Nassar2,3, Refah Alotaibi1, Ahmed Elshahhat4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2761-2793, 2023, DOI:10.32604/cmes.2023.028826

    Abstract A new extended exponential lifetime model called Harris extended-exponential (HEE) distribution for data modelling with increasing and decreasing hazard rate shapes has been considered. In the reliability context, researchers prefer to use censoring plans to collect data in order to achieve a compromise between total test time and/or test sample size. So, this study considers both maximum likelihood and Bayesian estimates of the Harris extended-exponential distribution parameters and some of its reliability indices using a progressive Type-II censoring strategy. Under the premise of independent gamma priors, the Bayesian estimation is created using the squared-error and general entropy loss functions. Due… More >

  • Open Access

    ARTICLE

    AWK-TIS: An Improved AK-IS Based on Whale Optimization Algorithm and Truncated Importance Sampling for Reliability Analysis

    Qiang Qin1,2,*, Xiaolei Cao1, Shengpeng Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1457-1480, 2023, DOI:10.32604/cmes.2023.022078

    Abstract In this work, an improved active kriging method based on the AK-IS and truncated importance sampling (TIS) method is proposed to efficiently evaluate structural reliability. The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature. The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly, and the whale optimization algorithm (WOA) is employed to acquire the optimal Kriging model and the most probable point (MPP). To verify the performance of the AWK-TIS method for structural reliability, four numerical cases which are utilized as benchmarks in literature and… More >

Displaying 1-10 on page 1 of 33. Per Page