Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    HUANNet: A High-Resolution Unified Attention Network for Accurate Counting

    Haixia Wang, Huan Zhang, Xiuling Wang, Xule Xin, Zhiguo Zhang*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069340 - 10 November 2025

    Abstract Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision, with applications ranging from crowd counting to various other object counting tasks. To address this, we propose HUANNet (High-Resolution Unified Attention Network), a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework, while optimizing computational distribution across parallel branches. HUANNet introduces three core modules: the High-Resolution Attention Module (HRAM), which enhances feature extraction by optimizing multi-resolution feature fusion; the Unified Multi-Scale Attention Module (UMAM), which integrates spatial, channel, and More >

  • Open Access

    REVIEW

    Natural Language Processing with Transformer-Based Models: A Meta-Analysis

    Charles Munyao*, John Ndia

    Journal on Artificial Intelligence, Vol.7, pp. 329-346, 2025, DOI:10.32604/jai.2025.069226 - 22 September 2025

    Abstract The natural language processing (NLP) domain has witnessed significant advancements with the emergence of transformer-based models, which have reshaped the text understanding and generation landscape. While their capabilities are well recognized, there remains a limited systematic synthesis of how these models perform across tasks, scale efficiently, adapt to domains, and address ethical challenges. Therefore, the aim of this paper was to analyze the performance of transformer-based models across various NLP tasks, their scalability, domain adaptation, and the ethical implications of such models. This meta-analysis paper synthesizes findings from 25 peer-reviewed studies on NLP transformer-based models,… More >

  • Open Access

    ARTICLE

    DeblurTomo: Self-Supervised Computed Tomography Reconstruction from Blurry Images

    Qingyang Zhou1, Guofeng Lu2, Yunfan Ye3,*, Zhiping Cai1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2411-2427, 2025, DOI:10.32604/cmc.2025.066810 - 03 July 2025

    Abstract Computed Tomography (CT) reconstruction is essential in medical imaging and other engineering fields. However, blurring of the projection during CT imaging can lead to artifacts in the reconstructed images. Projection blur combines factors such as larger ray sources, scattering and imaging system vibration. To address the problem, we propose DeblurTomo, a novel self-supervised learning-based deblurring and reconstruction algorithm that efficiently reconstructs sharp CT images from blurry input without needing external data and blur measurement. Specifically, we constructed a coordinate-based implicit neural representation reconstruction network, which can map the coordinates to the attenuation coefficient in the… More >

  • Open Access

    ARTICLE

    Leveraging Unlabeled Corpus for Arabic Dialect Identification

    Mohammed Abdelmajeed1,*, Jiangbin Zheng1, Ahmed Murtadha1, Youcef Nafa1, Mohammed Abaker2, Muhammad Pervez Akhter3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3471-3491, 2025, DOI:10.32604/cmc.2025.059870 - 16 April 2025

    Abstract Arabic Dialect Identification (DID) is a task in Natural Language Processing (NLP) that involves determining the dialect of a given piece of text in Arabic. The state-of-the-art solutions for DID are built on various deep neural networks that commonly learn the representation of sentences in response to a given dialect. Despite the effectiveness of these solutions, the performance heavily relies on the amount of labeled examples, which is labor-intensive to attain and may not be readily available in real-world scenarios. To alleviate the burden of labeling data, this paper introduces a novel solution that leverages… More >

  • Open Access

    ARTICLE

    Semi-Supervised New Intention Discovery for Syntactic Elimination and Fusion in Elastic Neighborhoods

    Di Wu*, Liming Feng, Xiaoyu Wang

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 977-999, 2025, DOI:10.32604/cmc.2025.060319 - 26 March 2025

    Abstract Semi-supervised new intent discovery is a significant research focus in natural language understanding. To address the limitations of current semi-supervised training data and the underutilization of implicit information, a Semi-supervised New Intent Discovery for Elastic Neighborhood Syntactic Elimination and Fusion model (SNID-ENSEF) is proposed. Syntactic elimination contrast learning leverages verb-dominant syntactic features, systematically replacing specific words to enhance data diversity. The radius of the positive sample neighborhood is elastically adjusted to eliminate invalid samples and improve training efficiency. A neighborhood sample fusion strategy, based on sample distribution patterns, dynamically adjusts neighborhood size and fuses sample More >

  • Open Access

    ARTICLE

    Optimizing AES S-Box Implementation: A SAT-Based Approach with Tower Field Representations

    Jingya Feng1, Ying Zhao2,*, Tao Ye1, Wei Feng3,*

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 1491-1507, 2025, DOI:10.32604/cmc.2025.059882 - 26 March 2025

    Abstract The efficient implementation of the Advanced Encryption Standard (AES) is crucial for network data security. This paper presents novel hardware implementations of the AES S-box, a core component, using tower field representations and Boolean Satisfiability (SAT) solvers. Our research makes several significant contributions to the field. Firstly, we have optimized the GF() inversion, achieving a remarkable 31.35% area reduction (15.33 GE) compared to the best known implementations. Secondly, we have enhanced multiplication implementations for transformation matrices using a SAT-method based on local solutions. This approach has yielded notable improvements, such as a 22.22% reduction in More >

  • Open Access

    ARTICLE

    Classifying Network Flows through a Multi-Modal 1D CNN Approach Using Unified Traffic Representations

    Ravi Veerabhadrappa*, Poornima Athikatte Sampigerayappa

    Computer Systems Science and Engineering, Vol.49, pp. 333-351, 2025, DOI:10.32604/csse.2025.061285 - 19 March 2025

    Abstract In recent years, the analysis of encrypted network traffic has gained momentum due to the widespread use of Transport Layer Security and Quick UDP Internet Connections protocols, which complicate and prolong the analysis process. Classification models face challenges in understanding and classifying unknown traffic because of issues related to interpret ability and the representation of traffic data. To tackle these complexities, multi-modal representation learning can be employed to extract meaningful features and represent them in a lower-dimensional latent space. Recently, auto-encoder-based multi-modal representation techniques have shown superior performance in representing network traffic. By combining the… More >

  • Open Access

    ARTICLE

    Influence des croyances et des représentations de la psyché dans l’après-cancer du sein

    Virginie Di Silverio1,2,*, Susann Heenen-Wolff1, Jochem Willemsen1, Patrick Derleyn3

    Psycho-Oncologie, Vol.18, No.4, pp. 349-357, 2024, DOI:10.32604/po.2024.050402 - 04 December 2024

    Abstract L’annonce d’une maladie cancéreuse éveille ou renforce pour certains les représentations liées au pouvoir du psychisme sur le corps. L’investigation du champ des théories psychosomatiques convoque les croyances en une psyché garante de la bonne santé somatique. Une confusion dans l’appréhension des concepts liées aux facteurs psychiques comme responsable du bon fonctionnement du corps a, selon nous, des effets dans l’après-coup pour les femmes atteintes d’un cancer du sein. L’étude est menée auprès de six femmes atteintes d’un cancer du sein portant sur l’influence des croyances et des représentations de la maladie cancéreuse du sein.… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    ARTICLE

    Enhancing Arabic Cyberbullying Detection with End-to-End Transformer Model

    Mohamed A. Mahdi1, Suliman Mohamed Fati2,*, Mohamed A.G. Hazber1, Shahanawaj Ahamad3, Sawsan A. Saad4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1651-1671, 2024, DOI:10.32604/cmes.2024.052291 - 27 September 2024

    Abstract Cyberbullying, a critical concern for digital safety, necessitates effective linguistic analysis tools that can navigate the complexities of language use in online spaces. To tackle this challenge, our study introduces a new approach employing Bidirectional Encoder Representations from the Transformers (BERT) base model (cased), originally pretrained in English. This model is uniquely adapted to recognize the intricate nuances of Arabic online communication, a key aspect often overlooked in conventional cyberbullying detection methods. Our model is an end-to-end solution that has been fine-tuned on a diverse dataset of Arabic social media (SM) tweets showing a notable… More >

Displaying 1-10 on page 1 of 27. Per Page