Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (225)
  • Open Access

    ARTICLE

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

    Xianke He1, Yuansheng Li1, Hengjie Liao1, Zhehao Jiang1, Meixue Shi1, Zhe Hu2,3, Yaowei Huang2,3, Keliu Wu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074990 - 06 February 2026

    Abstract Weak water-drive offshore reservoirs with complex pore architecture and strong permeability heterogeneity present major challenges, including rapid depletion of formation energy, low waterflood efficiency, and significant lateral and vertical variability in crude oil properties, all of which contribute to limited recovery. To support more effective field development, alternative strategies and a deeper understanding of pore-scale flow behavior are urgently needed. In this work, CT imaging and digital image processing were used to construct a digital rock model representative of the target reservoir. A pore-scale flow model was then developed, and the Volume of Fluid (VOF)… More > Graphic Abstract

    Pore-Scale Simulations to Enhance Development Strategies in Offshore Weak Water-Drive Reservoirs

  • Open Access

    ARTICLE

    Attention-Enhanced ResNet-LSTM Model with Wind-Regime Clustering for Wind Speed Forecasting

    Weiqi Mao1,2,3, Enbo Yu1,*, Guoji Xu3, Xiaozhen Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069733 - 29 January 2026

    Abstract Accurate wind speed prediction is crucial for stabilizing power grids with high wind energy penetration. This study presents a novel machine learning model that integrates clustering, deep learning, and transfer learning to mitigate accuracy degradation in 24-h forecasting. Initially, an optimized DB-SCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm clusters wind fields based on wind direction, probability density, and spectral features, enhancing physical interpretability and reducing training complexity. Subsequently, a ResNet (Residual Network) extracts multi-scale patterns from decomposed wind signals, while transfer learning adapts the backbone network across clusters, cutting training time by over… More >

  • Open Access

    ARTICLE

    Collaboration of GTCC-Powered CAES with Residual Compression Heat for Gas Turbine Inlet Air Heating

    Cheng Yang*, Hanjie Qi, Qing Yin

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070957 - 27 January 2026

    Abstract In order to enhance the off-peak performance of gas turbine combined cycle (GTCC) units, a novel collaborative power generation system (CPG) was proposed. During off-peak operation periods, the remaining power of the GTCC was used to drive the adiabatic compressed air energy storage (ACAES), while the intake air of the GTCC was heated by the compression heat of the ACAES. Based on a 67.3 MW GTCC, under specific demand load distribution, a CPG system and a benchmark system (BS) were designed, both of which used 9.388% of the GTCC output power to drive the ACAES.… More >

  • Open Access

    ARTICLE

    MRFNet: A Progressive Residual Fusion Network for Blind Multiscale Image Deblurring

    Wang Zhang1,#, Haozhuo Cao2,#, Qiangqiang Yao1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072948 - 12 January 2026

    Abstract Recent advances in deep learning have significantly improved image deblurring; however, existing approaches still suffer from limited global context modeling, inadequate detail restoration, and poor texture or edge perception, especially under complex dynamic blur. To address these challenges, we propose the Multi-Resolution Fusion Network (MRFNet), a blind multi-scale deblurring framework that integrates progressive residual connectivity for hierarchical feature fusion. The network employs a three-stage design: (1) TransformerBlocks capture long-range dependencies and reconstruct coarse global structures; (2) Nonlinear Activation Free Blocks (NAFBlocks) enhance local detail representation and mid-level feature fusion; and (3) an optimized residual subnetwork… More >

  • Open Access

    ARTICLE

    RE-UKAN: A Medical Image Segmentation Network Based on Residual Network and Efficient Local Attention

    Bo Li, Jie Jia*, Peiwen Tan, Xinyan Chen, Dongjin Li

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071186 - 12 January 2026

    Abstract Medical image segmentation is of critical importance in the domain of contemporary medical imaging. However, U-Net and its variants exhibit limitations in capturing complex nonlinear patterns and global contextual information. Although the subsequent U-KAN model enhances nonlinear representation capabilities, it still faces challenges such as gradient vanishing during deep network training and spatial detail loss during feature downsampling, resulting in insufficient segmentation accuracy for edge structures and minute lesions. To address these challenges, this paper proposes the RE-UKAN model, which innovatively improves upon U-KAN. Firstly, a residual network is introduced into the encoder to effectively… More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 08 January 2026

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    ResghostNet: Boosting GhostNet with Residual Connections and Adaptive-SE Blocks

    Yuang Chen1,2, Yong Li1,*, Fang Lin1,2, Shuhan Lv1,2, Jiaze Jiang1,2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-18, 2026, DOI:10.32604/cmc.2025.070990 - 09 December 2025

    Abstract Aiming at the problem of potential information noise introduced during the generation of ghost feature maps in GhostNet, this paper proposes a novel lightweight neural network model called ResghostNet. This model constructs the Resghost Module by combining residual connections and Adaptive-SE Blocks, which enhances the quality of generated feature maps through direct propagation of original input information and selection of important channels before cheap operations. Specifically, ResghostNet introduces residual connections on the basis of the Ghost Module to optimize the information flow, and designs a weight self-attention mechanism combined with SE blocks to enhance feature More >

  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025

    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    PROCEEDINGS

    Enhancing Functional Stability of NiTi Tube for Elastocaloric Cooling Through Overstress Training

    Qiuhong Wang1, Hao Yin1,*, Qingping Sun1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012656

    Abstract Tubular NiTi is a promising candidate of eco-friendly solid-state refrigerant for elastocaloric cooling, but the severe functional degradation of NiTi material during cyclic phase transition (PT) is a key concern in the technology development. Here, plastic deformation of 6.7% is applied on the NiTi tube by overstress training under 1900 MPa for five cycles to improve the cyclic PT stability without losing cooling efficiency. It is found that after 106 compressive cycles under an applied stress of 1000 MPa, the overstress-trained NiTi tube exhibits small residual strain (0.5%), stable adiabatic temperatures drop (T=11K) and improved… More >

Displaying 1-10 on page 1 of 225. Per Page