Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Effect of Alkali Treatment on Saharan aloe vera cactus Fibre Properties and Optimization of Process by Response Surface Methodology

    GOBI NALLATHAMBI, BHARGAVI RAM THIMMIAH*

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 189-200, 2020, DOI:10.32381/JPM.2020.37.3-4.6

    Abstract The aim of this study is to optimize the process parameters of alkali treated Saharan aloe vera cactus fibres using of Box-behnken experimental design. The Saharan aloe vera cactus fibres were treated with different concentration of NaOH, soaking time and temperature which affect the properties of fibres and plays main role in removal of lignin, hemicellulose, pectin and wax content. The chemical composition of untreated and treated fibres was analyzed by standard methods. XRD result shows the improvement in the crystallinity index of fibres due to alkali treatment. ATR-FTIR analysis shows that hemicellulose and lignin More >

  • Open Access

    ARTICLE

    Optimization of Roots and Copper Slag to Reinforce Soft Soil Using Response Surface Method

    Dingbang Zhang1, Yi Zhang2,*, Zhiguo Cao3, Tao Cheng1

    Journal of Renewable Materials, Vol.8, No.11, pp. 1391-1409, 2020, DOI:10.32604/jrm.2020.012695 - 28 September 2020

    Abstract In this paper, roots and copper slag were used to overcome the weak- ness and reinforce the mechanical property of soft soil. The experiments were designed by the Response Surface Method (RSM), the content optimizing of the root permeated copper slag mixed soil for achieving appropriate values of shear strength and the final results evaluating were also conducted by RSM. Four independent variables including moisture content (12–21% by dry weight of the mixture), slag content (10–20% by dry weight of the mixture), roots content (0–1.1% by dry weight of the mixture), and aspect ratio of More >

  • Open Access

    ARTICLE

    Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization

    Haitao Yue1, Chenguang Guo1,*, Qiang Li1, Lijuan Zhao1, Guangbo Hao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 937-952, 2020, DOI:10.32604/cmes.2020.010565 - 21 August 2020

    Abstract To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption. Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out. The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed, and the multi-objective optimization model was constructed. The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters. It was observed that surface roughness… More >

  • Open Access

    REVIEW

    Fungal assembly of L-asparaginase using solid-state fermentation: a review

    SALLY NASER1,2, WESAMELDIN SABER3, MOHAMMAD EL-METWALLY4,*, MAHMOUD MOUSTAFA5,6, ATTALLA EL-KOTT5,7

    BIOCELL, Vol.44, No.2, pp. 147-155, 2020, DOI:10.32604/biocell.2020.09522 - 27 May 2020

    Abstract Because of its antitumor therapeutic-activity, as well as its application in food industries to improve the quality, L-asparaginase has attracted considerable attention from several investigators. In recent years, fungi have occupied advanced rank among microorganisms in the production process of the enzyme. This review is spotting the light on the advantages of fungal enzyme and its applications in the food industry and medications. The solid-state fermentation was discussed as the wide alternative and most accepted biosynthesis technique. However, some lights were also spotted to the statistical experimental design of the fermentation process, mainly on the More >

  • Open Access

    ARTICLE

    Influence of Operating Parameters on Unbalance in Rotating Machinery Using Response Surface Method

    Ameya M. Mahadeshwar1, *, Sangram S. Patil1, Vishwadeep C. Handikherkar1, Vikas M. Phalle1

    Sound & Vibration, Vol.52, No.5, pp. 12-21, 2018, DOI:10.32604/sv.2018.03927

    Abstract Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults. In this work, the effect of different operating conditions viz. the unbalanced weight, radius, speed and position of the rotor disc on the unbalance in rotating machine are studied experimentally and analyzed by using Response Surface Methodology (RSM). RSM is a technique which consists of mathematical and statistical methods to develop the relationship between the inputs and outputs of a system by distinct functions. L27 Orthogonal Array (OA) was developed by using Design… More >

  • Open Access

    ARTICLE

    A New Multi-objective Reliability-based Robust Design Optimization Method

    Zichun Yang1,2, Maolin Peng1,3,4, Yueyun Cao1, Lei Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.4, pp. 409-442, 2014, DOI:10.3970/cmes.2014.098.409

    Abstract A new multi-objective reliability-based robust design optimization (M ORBRDO) model is proposed which integrats the multi-objective robustness, the reliability sensitivity robustness and the six sigma robustness design idea. The pure-quadratic polynomial functions are adopted to fit the performance objective functions (POF) and the ultimate limited state functions (ULSF) of the structure. Based on the ULSF and the checking point method, the equations of the first order reliability index are calculated. The mapping transformation method is employed when the non-normal distribution variables are included. According to the POF and the Taylor series expansion method, the equations… More >

  • Open Access

    ARTICLE

    A Moving Kriging Interpolation Response Surface Method for Structural Reliability Analysis

    W. Zhao1,2, J.K. Liu3, X.Y. Li2, Q.W. Yang4, Y.Y. Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.6, pp. 469-488, 2013, DOI:10.3970/cmes.2013.093.469

    Abstract In order to obtain reliable structural design, it is of extreme importance to evaluate the failure probability, safety levels of structure (reliability analysis) and the effect of a change in a variable parameter on structural safety (sensitivity analysis) when uncertainties are considered. With a computationally cheaper approximation of the limit state function, various response surface methods (RSMs) have emerged as a convenient tool to solve this especially for complex problems. However, the traditional RSMs may produce large errors in some conditions especially for those highly non-linear limit state functions. Instead of the traditional least squares… More >

  • Open Access

    ARTICLE

    A Structural Reliability Analysis Method Based on Radial Basis Function

    M. Q. Chau1,2, X. Han1, Y. C. Bai1, C. Jiang1

    CMC-Computers, Materials & Continua, Vol.27, No.2, pp. 128-142, 2012, DOI:10.32604/cmc.2012.027.128

    Abstract The first-order reliability method (FORM) is one of the most widely used structural reliability analysis techniques due to its simplicity and efficiency. However, direct using FORM seems disability to work well for complex problems, especially related to high-dimensional variables and computation intensive numerical models. To expand the applicability of the FORM for more practical engineering problems, a response surface (RS) approach based FORM is proposed for structural reliability analysis. The radial basis function (RBF) is employed to approximate the implicit limit-state functions combined with Latin Hypercube Sampling (LHS) strategy. To guarantee the numerical stability, the More >

  • Open Access

    ARTICLE

    Reliability-Based Multiobjective Design Optimization under Interval Uncertainty

    Fangyi Li1,2, Zhen Luo3, Guangyong Sun4

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.1, pp. 39-64, 2011, DOI:10.3970/cmes.2011.074.039

    Abstract This paper studies the reliability-based multiobjective optimization by using a new interval strategy to model uncertain parameters. A new satisfaction degree of interval, which is significantly extended from [0, 1] to [–∞, +∞], is introduced into the non-probabilistic reliability-based optimization. Based on a predefined satisfaction degree level, the uncertain constraints can be effectively transformed into deterministic ones. The interval number programming method is applied to change each uncertain objective function to a deterministic two-objective optimization. So in this way the uncertain multiobjective optimization problem is transformed into a deterministic optimization problem and a reliability-based multiobjective More >

  • Open Access

    ARTICLE

    SYSTEMATIC STRATEGY FOR MODELING AND OPTIMIZATION OF THERMAL SYSTEMS WITH DESIGN UNCERTAINTIES

    Po Ting Lin, Hae Chang Gea, Yogesh Jaluria*

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-20, 2010, DOI:10.5098/hmt.v1.1.3003

    Abstract Thermal systems play significant roles in the engineering practice and our lives. To improve those thermal systems, it is necessary to model and optimize the design and the operating conditions. More importantly, the design uncertainties should be considered because the failures of the thermal systems may be very dangerous and produce large loss. This review paper focuses on a systematic strategy of modeling and optimizing of the thermal systems with the considerations of the design uncertainties. To demonstrate the proposed strategy, one of the complicated thermal systems, Chemical Vapor Deposition (CVD), is simulated, parametrically modeled,… More >

Displaying 21-30 on page 3 of 30. Per Page