Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Rolling Decision Model of Thermal Power Retrofit and Generation Expansion Planning Considering Carbon Emissions and Power Balance Risk

    Dong Pan1, Xu Gui1, Jiayin Xu1, Yuming Shen1, Haoran Xu2, Yinghao Ma2,*

    Energy Engineering, Vol.121, No.5, pp. 1309-1328, 2024, DOI:10.32604/ee.2024.046464

    Abstract With the increasing urgency of the carbon emission reduction task, the generation expansion planning process needs to add carbon emission risk constraints, in addition to considering the level of power adequacy. However, methods for quantifying and assessing carbon emissions and operational risks are lacking. It results in excessive carbon emissions and frequent load-shedding on some days, although meeting annual carbon emission reduction targets. First, in response to the above problems, carbon emission and power balance risk assessment indicators and assessment methods, were proposed to quantify electricity abundance and carbon emission risk level of power planning scenarios, considering power supply regulation… More >

  • Open Access

    ARTICLE

    Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System

    Liqing Yan1, Jiang Liu1,2,*, Guangwei Ying3, Ning Zhang4

    Energy Engineering, Vol.120, No.8, pp. 1919-1938, 2023, DOI:10.32604/ee.2023.027546

    Abstract Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency. Taking a heating station heating project as an example, the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate. Rankine cycle is an effective waste heat recovery method, and a steam boiler organic Rankine cycle (ORC) cogeneration waste heat utilization method is proposed. The system model simulation is constructed and verified. First, a thermodynamic model was constructed in MATLAB and five suitable work gases were selected to analyze the effects of… More > Graphic Abstract

    Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System

  • Open Access

    ARTICLE

    Investigating the Retrofit of RC Frames Using TADAS Yielding Dampers

    Mehrzad TahamouliRoudsari1,*, K. Cheraghi2, R. Aghayari2

    Structural Durability & Health Monitoring, Vol.16, No.4, pp. 343-359, 2022, DOI:10.32604/sdhm.2022.07927

    Abstract TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures. These types of dampers are designed so that they would yield before the main components of the structure during earthquake. This dissipates a large portion of the earthquake’s energy and reduces the energy dissipation demand in the main components of the structure. Considering its suitable performance, this damper has been the subject of numerous studies. However, there are still ambiguities regarding the effect of the number of these dampers on the retrofitting of reinforced concrete (RC) frames and their design procedure.… More >

  • Open Access

    REVIEW

    A Review on Strengthening of Timber Beams Using Fiber Reinforced Polymers

    Bingyu Jian1,2, Ke Cheng3, Haitao Li1,2,*, Mahmud Ashraf2,4, Xiaoyan Zheng1,2, Assima Dauletbek1,2, Mahdi Hosseini1,2, Rodolfo Lorenzo5, Ileana Corbi6, Ottavia Corbi6, Kun Zhou7

    Journal of Renewable Materials, Vol.10, No.8, pp. 2073-2098, 2022, DOI:10.32604/jrm.2022.021983

    Abstract Fiber reinforced polymer (FRP) has been used in the construction industry because of its advantages such as high strength, light weight, corrosion resistance, low density and high elasticity. This paper presents a review of bonding techniques adopted to strengthen timber beams using FRP to achieve larger spans. Different methods of bonding between FRP and timber beams have been summarized with a focus on the influencing factors and their effects as well as relevant bond-slip models proposed for fundamental understanding. Experimental investigations to evaluate the flexural performance of timber beams strengthened by FRP bars, sheets and wraps have also been critically… More > Graphic Abstract

    A Review on Strengthening of Timber Beams Using Fiber Reinforced Polymers

  • Open Access

    ARTICLE

    Numerical Simulation of Retrofit Scheme of a Boiler Tail Flue

    Yukun Lv, Jiaxi Yang, Jiawen Wang*, Runcheng Zhang, Shuang Yang, Wentao Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1203-1217, 2020, DOI:10.32604/fdmp.2020.010489

    Abstract Aiming at the problem that the total pressure loss of the flue of the electric precipitator of the 350 MW unit of a power plant to the inlet of the draft fan is too large, the numerical simulation software Fluent and the standard k-ε model was used to simulate the flue, the results show that the main part of the flue mean total pressure loss is derived from the confluence header and elbow. In order to reduce the loss and consider the cost of transformation, the concept of twodimensional feature surface is established, gradually proposed three sets of flue transformation… More >

  • Open Access

    ARTICLE

    Energy Retrofitting of School Buildings in UAE

    Abdelsalam Aldawoud*, Fatma Elzahraa Hosny, Rasha Mdkhana

    Energy Engineering, Vol.117, No.6, pp. 381-395, 2020, DOI:10.32604/EE.2020.011863

    Abstract The opportunities for energy savings by retrofitting of the existing school buildings in the United Arab Emirates (UAE) are significant because of their excessive energy consumption and space cooling demand. In this research, energy modeling and simulation are utilized with the use of Design Builder software to examine the influence of various retrofitting measures of air-conditioning (A/C) system and building envelope components on the energy use. Several combined measures are implemented and assessed to achieve the main goal of this research of selecting the best course of action to reduce cooling energy consumption for existing school buildings in the UAE.… More >

  • Open Access

    REVIEW

    Review on Bond Properties between Wood and Fiber Reinforced Polymer

    Zhen Wang1, Haitao Li1,2,*, Rodolfo Lorenzo3, Ileana Corbi4, Ottavia Corbi4, Changhua Fang2

    Journal of Renewable Materials, Vol.8, No.8, pp. 993-1018, 2020, DOI:10.32604/jrm.2020.012488

    Abstract Retrofitting of existing ancient and modern timber structures has been an important project recently. And it triggers a need of excellent strengthening methods, so does the strengthening of newly built architecture. Traditional strengthening methods have shortcomings such as high costing and destroying the aesthetic of the structure, many of which can be overcome by means of using fiber reinforced polymer (FRP) composites. However, the behavior of FRP-towood systems has yet to be thoroughly researched compared with their FRP-toconcrete or FRP-to-steel counterparts. As FRP retrofitting and strengthening timber structures has a promising future, better understanding of their failure modes will enable… More >

  • Open Access

    ABSTRACT

    Numerical study of retrofitted deep coupling beams by bolting restrained steel plate

    B.Cheng1, R.K.L. Su1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.15, No.3, pp. 75-84, 2010, DOI:10.3970/icces.2010.015.075

    Abstract Deep reinforced concrete (RC) coupling beams with low shear span ratios and conventionally reinforced shear stirrups tend to fail in a brittle way with limited ductility and deformability under reversed cyclic loading. Experimental studies have shown that bolting restrained steel plate (BRSP) to existing deep RC coupling beams can enhance the deformability and energy dissipation while maintaining the flexural stiffness, improving the beams' performance during an earthquake. In this study, a nonlinear finite element package ATENA was used to simulate the overall behavior of three previously tested BRSP retrofitted coupling beams. This paper presents the numerical study for the accurate… More >

  • Open Access

    ARTICLE

    Experimental and Analytical Studies on Concrete Cylinders Wrapped with Fiber Reinforced Polymer

    Bhashya V.1, Ramesh G.1, Sundar Kumar S.1, Bharatkumar B. H.1, Krishnamoorthy T.S.1, Nagesh R Iyer.1

    CMC-Computers, Materials & Continua, Vol.25, No.1, pp. 47-74, 2011, DOI:10.3970/cmc.2011.025.047

    Abstract Fibre-reinforced polymers (FRPs) are being introduced into a wide variety of civil engineering applications. These materials have been found to be particularly attractive for applications involving the strengthening and rehabilitation of existing reinforced concrete structures. In this paper, experimental investigations and analytical studies on four series of the concrete cylinders wrapped with FRP are presented. First series consist of concrete cylinders wrapped with one layer carbon fiber reinforced polymer (CFRP), second series concrete cylinders wrapped with two layers CFRP, in third series, concrete cylinders were wrapped with one layer glass fiber reinforced polymer (GFRP) and the fourth series consist of… More >

Displaying 1-10 on page 1 of 9. Per Page