Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    MSCNN-LSTM Model for Predicting Return Loss of the UHF Antenna in HF-UHF RFID Tag Antenna

    Zhao Yang1, Yuan Zhang1, Lei Zhu2,*, Lei Huang1, Fangyu Hu3, Yanping Du1, Xiaowei Li1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2889-2904, 2023, DOI:10.32604/cmc.2023.037297

    Abstract High-frequency (HF) and ultrahigh-frequency (UHF) dual-band radio frequency identification (RFID) tags with both near-field and far-field communication can meet different application scenarios. However, it is time-consuming to calculate the return loss of a UHF antenna in a dual-band tag antenna using electromagnetic (EM) simulators. To overcome this, the present work proposes a model of a multi-scale convolutional neural network stacked with long and short-term memory (MSCNN-LSTM) for predicting the return loss of UHF antennas instead of EM simulators. In the proposed MSCNN-LSTM, the MSCNN has three branches, which include three convolution layers with different kernel sizes and numbers. Therefore, MSCNN… More >

  • Open Access


    Optimized Neural Network-Based Micro Strip Patch Antenna Design for Radar Application

    A. Yogeshwaran1,*, K. Umadevi2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1491-1503, 2023, DOI:10.32604/iasc.2023.026424

    Abstract Microstrip antennas are low-profile antennas that are utilized in wireless communication systems. In recent years, communication engineers have been increasingly interested in it. Because of downsizing, novelty, and cost reduction, the number of wireless standards has expanded in recent years. Wideband technologies have evolved in addition to analog and digital services. Radars necessitate antenna subsystems that are low-profile and lightweight. Microstrip antennas have these qualities and are suited for radars as an alternative to the bulky and heavyweight reflector/slotted waveguide array antennas. A perforated corner single-line fed microstrip antenna is designed here. When compared to the basic square microstrip antenna,… More >

  • Open Access


    Capacitive Coupled Wide-Notch Stepped Impedance Narrow-Band Bandpass Filter for WiMax Application

    A. Kayalvizhi*, G. Sankara Malliga

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 501-514, 2022, DOI:10.32604/csse.2022.022855

    Abstract The development of wireless communication standards necessitates optimal filter design for the selection of appropriate bands of frequencies. In this work, a compact in size pair of parallel coupled symmetric stepped impedance-based resonator is designed with supporting to the WiMAX communication standards. The coupled resonator is tuned to allow the frequency band between 3.4 GHz and 3.8 GHz, which is centered at 3.6 GHz. A parasitic effect of capacitively coupled feed structure is used for exciting the two symmetrical stepped impedance resonators. The bandwidth and selectivity of the filter are enhanced with the change of characteristic impedances and controlling the coupling gap between… More >

Displaying 1-10 on page 1 of 3. Per Page