Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (161)
  • Open Access

    ARTICLE

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

    Guangfei Jia*, Fengwei Guo, Zhe Wu, Suxiao Cui, Jiajun Yang

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 383-405, 2023, DOI:10.32604/sdhm.2023.026885

    Abstract With the development of multi-signal monitoring technology, the research on multiple signal analysis and processing has become a hot subject. Mechanical equipment often works under variable working conditions, and the acquired vibration signals are often non-stationary and nonlinear, which are difficult to be processed by traditional analysis methods. In order to solve the noise reduction problem of multiple signals under variable speed, a COT-DCS method combining the Computed Order Tracking (COT) based on Chirplet Path Pursuit (CPP) and Distributed Compressed Sensing (DCS) is proposed. Firstly, the instantaneous frequency (IF) is extracted by CPP, and the speed is obtained by fitting.… More > Graphic Abstract

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

  • Open Access

    ARTICLE

    An Incentive Mechanism Model for Crowdsensing with Distributed Storage in Smart Cities

    Jiaxing Wang, Lanlan Rui, Yang Yang*, Zhipeng Gao, Xuesong Qiu

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2355-2384, 2023, DOI:10.32604/cmc.2023.034993

    Abstract Crowdsensing, as a data collection method that uses the mobile sensing ability of many users to help the public collect and extract useful information, has received extensive attention in data collection. Since crowdsensing relies on user equipment to consume resources to obtain information, and the quality and distribution of user equipment are uneven, crowdsensing has problems such as low participation enthusiasm of participants and low quality of collected data, which affects the widespread use of crowdsensing. This paper proposes to apply the blockchain to crowdsensing and solve the above challenges by utilizing the characteristics of the blockchain, such as immutability… More >

  • Open Access

    ARTICLE

    Transductive Transfer Dictionary Learning Algorithm for Remote Sensing Image Classification

    Jiaqun Zhu1, Hongda Chen2, Yiqing Fan1, Tongguang Ni1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2267-2283, 2023, DOI:10.32604/cmes.2023.027709

    Abstract To create a green and healthy living environment, people have put forward higher requirements for the refined management of ecological resources. A variety of technologies, including satellite remote sensing, Internet of Things, artificial intelligence, and big data, can build a smart environmental monitoring system. Remote sensing image classification is an important research content in ecological environmental monitoring. Remote sensing images contain rich spatial information and multi-temporal information, but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy. To solve this problem, this study develops a transductive transfer dictionary learning (TTDL) algorithm. In the TTDL, the… More >

  • Open Access

    ARTICLE

    Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing

    Huanan Yu1, Gang Han1,*, Hansong Luo2, He Wang1

    Energy Engineering, Vol.120, No.9, pp. 2029-2057, 2023, DOI:10.32604/ee.2023.028365

    Abstract Aiming at the problem that most of the cables in the power collection system of offshore wind farms are buried deep in the seabed, which makes it difficult to detect faults, this paper proposes a two-step fault location method based on compressed sensing and ranging equation. The first step is to determine the fault zone through compressed sensing, and improve the data measurement, dictionary design and algorithm reconstruction: Firstly, the phase-locked loop trigonometric function method is used to suppress the spike phenomenon when extracting the fault voltage, so that the extracted voltage value will not have a large error due… More >

  • Open Access

    ARTICLE

    Archimedes Optimization with Deep Learning Based Aerial Image Classification for Cybersecurity Enabled UAV Networks

    Faris Kateb, Mahmoud Ragab*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2171-2185, 2023, DOI:10.32604/csse.2023.039931

    Abstract The recent adoption of satellite technologies, unmanned aerial vehicles (UAVs) and 5G has encouraged telecom networking to evolve into more stable service to remote areas and render higher quality. But, security concerns with drones were increasing as drone nodes have been striking targets for cyberattacks because of immensely weak inbuilt and growing poor security volumes. This study presents an Archimedes Optimization with Deep Learning based Aerial Image Classification and Intrusion Detection (AODL-AICID) technique in secure UAV networks. The presented AODL-AICID technique concentrates on two major processes: image classification and intrusion detection. For aerial image classification, the AODL-AICID technique encompasses MobileNetv2… More >

  • Open Access

    ARTICLE

    A Consistent Mistake in Remote Sensing Images’ Classification Literature

    Huaxiang Song*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1381-1398, 2023, DOI:10.32604/iasc.2023.039315

    Abstract Recently, the convolutional neural network (CNN) has been dominant in studies on interpreting remote sensing images (RSI). However, it appears that training optimization strategies have received less attention in relevant research. To evaluate this problem, the author proposes a novel algorithm named the Fast Training CNN (FST-CNN). To verify the algorithm’s effectiveness, twenty methods, including six classic models and thirty architectures from previous studies, are included in a performance comparison. The overall accuracy (OA) trained by the FST-CNN algorithm on the same model architecture and dataset is treated as an evaluation baseline. Results show that there is a maximal OA… More >

  • Open Access

    ARTICLE

    3D Model Construction and Ecological Environment Investigation on a Regional Scale Using UAV Remote Sensing

    Chao Chen1,2, Yankun Chen3, Haohai Jin4, Li Chen5,*, Zhisong Liu3, Haozhe Sun4, Junchi Hong4, Haonan Wang4, Shiyu Fang4, Xin Zhang2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1655-1672, 2023, DOI:10.32604/iasc.2023.039057

    Abstract The acquisition of digital regional-scale information and ecological environmental data has high requirements for structural texture, spatial resolution, and multiple parameter categories, which is challenging to achieve using satellite remote sensing. Considering the convenient, facilitative, and flexible characteristics of UAV (unmanned air vehicle) remote sensing technology, this study selects a campus as a typical research area and uses the Pegasus D2000 equipped with a D-MSPC2000 multi-spectral camera and a CAM3000 aerial camera to acquire oblique images and multi-spectral data. Using professional software, including Context Capture, ENVI, and ArcGIS, a 3D (three-dimensional) campus model, a digital orthophoto map, and multi-spectral remote… More >

  • Open Access

    ARTICLE

    Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease

    Ingo Paetsch1,*, Roman Gebauer2, Christian Paech2, Frank-Thomas Riede2, Sabrina Oebel1, Andreas Bollmann1, Christian Stehning3, Jouke Smink4, Ingo Daehnert2, Cosima Jahnke1

    Congenital Heart Disease, Vol.18, No.3, pp. 279-294, 2023, DOI:10.32604/chd.2023.029634

    Abstract Background: In congenital heart disease (CHD) patients, detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making. Hence, the present study investigated the applicability of an advanced cardiovascular magnetic resonance (CMR) whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography. Methods: 86 consecutive pediatric patients and adults with congenital heart disease (age, 1 to 74 years; mean, 35 years) underwent CMR imaging including a free-breathing, ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed SENSE (nsWHcs). Anatomical assessability and… More >

  • Open Access

    ARTICLE

    A New Multi Chaos-Based Compression Sensing Image Encryption

    Fadia Ali Khan1, Jameel Ahmed1, Suliman A. Alsuhibany2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 437-453, 2023, DOI:10.32604/cmc.2023.032236

    Abstract The advancements in technology have substantially grown the size of image data. Traditional image encryption algorithms have limited capabilities to deal with the emerging challenges in big data, including compression and noise toleration. An image encryption method that is based on chaotic maps and orthogonal matrix is proposed in this study. The proposed scheme is built on the intriguing characteristics of an orthogonal matrix. Gram Schmidt disperses the values of pixels in a plaintext image by generating a random orthogonal matrix using logistic chaotic map. Following the diffusion process, a block-wise random permutation of the data is performed using multi-chaos.… More >

  • Open Access

    ARTICLE

    ResCD-FCN: Semantic Scene Change Detection Using Deep Neural Networks

    S. Eliza Femi Sherley1,*, J. M. Karthikeyan1, N. Bharath Raj1, R. Prabakaran2, A. Abinaya1, S. V. V. Lakshmi3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 215-227, 2022, DOI:10.32604/jai.2022.034931

    Abstract Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic (labels/categories) details before and after the timelines are analyzed. Periodical land change analysis is used for many real time applications for valuation purposes. Majority of the research works are focused on Convolutional Neural Networks (CNN) which tries to analyze changes alone. Semantic information of changes appears to be missing, there by absence of communication between the different semantic timelines and changes detected over the region happens. To overcome this limitation, a… More >

Displaying 21-30 on page 3 of 161. Per Page