Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

    Rıdvan Yayla, Hakan Üçgün*, Onur Ali Korkmaz

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4055-4087, 2025, DOI:10.32604/cmes.2025.072703 - 23 December 2025

    Abstract Recent advancements in autonomous vehicle technologies are transforming intelligent transportation systems. Artificial intelligence enables real-time sensing, decision-making, and control on embedded platforms with improved efficiency. This study presents the design and implementation of an autonomous radio-controlled (RC) vehicle prototype capable of lane line detection, obstacle avoidance, and navigation through dynamic path planning. The system integrates image processing and ultrasonic sensing, utilizing Raspberry Pi for vision-based tasks and Arduino Nano for real-time control. Lane line detection is achieved through conventional image processing techniques, providing the basis for local path generation, while traffic sign classification employs a… More > Graphic Abstract

    An Embedded Computer Vision Approach to Environment Modeling and Local Path Planning in Autonomous Mobile Robots

  • Open Access

    ARTICLE

    Attitude Estimation Using an Enhanced Error-State Kalman Filter with Multi-Sensor Fusion

    Yu Tao1, Tian Yin2, Yang Jie1,*

    Journal on Artificial Intelligence, Vol.7, pp. 549-570, 2025, DOI:10.32604/jai.2025.072727 - 01 December 2025

    Abstract To address the issue of insufficient accuracy in attitude estimation using Inertial Measurement Units (IMU), this paper proposes a multi-sensor fusion attitude estimation method based on an improved Error-State Kalman Filter (ESKF). Several adaptive mechanisms are introduced within the standard ESKF framework: first, the process noise covariance is dynamically adjusted based on gyroscope angular velocity to enhance the algorithm’s adaptability under both static and dynamic conditions; second, the Sage-Husa algorithm is employed to estimate the measurement noise covariance of the accelerometer and magnetometer in real-time, mitigating disturbances caused by external accelerations and magnetic fields. Additionally,… More >

  • Open Access

    REVIEW

    3D LiDAR-Based Techniques and Cost-Effective Measures for Precision Agriculture: A Review

    Mukesh Kumar Verma1,2,*, Manohar Yadav1

    Revue Internationale de Géomatique, Vol.34, pp. 855-879, 2025, DOI:10.32604/rig.2025.069914 - 17 November 2025

    Abstract Precision Agriculture (PA) is revolutionizing modern farming by leveraging remote sensing (RS) technologies for continuous, non-destructive crop monitoring. This review comprehensively explores RS systems categorized by platform—terrestrial, airborne, and space-borne—and evaluates the role of multi-sensor fusion in addressing the spatial and temporal complexity of agricultural environments. Emphasis is placed on data from LiDAR, GNSS, cameras, and radar, alongside derived metrics such as plant height, projected leaf area, and biomass. The study also highlights the significance of data processing methods, particularly machine learning (ML) and deep learning (DL), in extracting actionable insights from large datasets. By More >

  • Open Access

    ARTICLE

    Research on Vehicle Safety Based on Multi-Sensor Feature Fusion for Autonomous Driving Task

    Yang Su1,*, Xianrang Shi1, Tinglun Song2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5831-5848, 2025, DOI:10.32604/cmc.2025.064036 - 19 May 2025

    Abstract Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving. This study aims to enhance the learning efficiency of multi-sensor feature fusion in autonomous driving tasks, thereby improving the safety and responsiveness of the system. To achieve this goal, we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities: visual, radar, and lidar data. The model optimizes the feature fusion process through the introduction of two novel mechanisms: Sparse Channel Pooling (SCP) and Residual Triplet-Attention… More >

  • Open Access

    ARTICLE

    Point-Based Fusion for Multimodal 3D Detection in Autonomous Driving

    Xinxin Liu, Bin Ye*

    Computer Systems Science and Engineering, Vol.49, pp. 287-300, 2025, DOI:10.32604/csse.2025.061655 - 20 February 2025

    Abstract In the broader field of mechanical technology, and particularly in the context of self-driving vehicles, cameras and Light Detection and Ranging (LiDAR) sensors provide complementary modalities that hold significant potential for sensor fusion. However, directly merging multi-sensor data through point projection often results in information loss due to quantization, and managing the differing data formats from multiple sensors remains a persistent challenge. To address these issues, we propose a new fusion method that leverages continuous convolution, point-pooling, and a learned Multilayer Perceptron (MLP) to achieve superior detection performance. Our approach integrates the segmentation mask with… More >

  • Open Access

    ARTICLE

    Improving the Position Accuracy and Computational Efficiency of UAV Terrain Aided Navigation Using a Two-Stage Hybrid Fuzzy Particle Filtering Method

    Sofia Yousuf1, Muhammad Bilal Kadri2,*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1193-1210, 2025, DOI:10.32604/cmc.2024.054587 - 03 January 2025

    Abstract Terrain Aided Navigation (TAN) technology has become increasingly important due to its effectiveness in environments where Global Positioning System (GPS) is unavailable. In recent years, TAN systems have been extensively researched for both aerial and underwater navigation applications. However, many TAN systems that rely on recursive Unmanned Aerial Vehicle (UAV) position estimation methods, such as Extended Kalman Filters (EKF), often face challenges with divergence and instability, particularly in highly non-linear systems. To address these issues, this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter. To enhance the… More >

  • Open Access

    ARTICLE

    Target Detection on Water Surfaces Using Fusion of Camera and LiDAR Based Information

    Yongguo Li, Yuanrong Wang, Jia Xie*, Caiyin Xu, Kun Zhang

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 467-486, 2024, DOI:10.32604/cmc.2024.051426 - 18 July 2024

    Abstract To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle (USV) perception, this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection. Firstly, the visual recognition component employs an improved YOLOv7 algorithm based on a self-built dataset for the detection of water surface targets. This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure, addressing the problem of excessive redundant information during feature extraction in the original YOLOv7 network model. Simultaneously, this modification simplifies… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine

    Chen Chen1,2, Zhongwei Xu1, Meng Mei1,*, Kai Huang3, Siu Ming Lo2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4533-4549, 2024, DOI:10.32604/cmc.2024.048995 - 20 June 2024

    Abstract Railway switch machine is essential for maintaining the safety and punctuality of train operations. A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein. Unlike existing methods, this approach takes into account the spatial information of the time series monitoring data, aligning with the domain expertise of on-site manual monitoring. Besides, a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information. First, one-dimensional signal data is preprocessed and transformed into two-dimensional images. Afterward, the fusion feature tensor is created by More >

  • Open Access

    ARTICLE

    Research on Optimal Preload Method of Controllable Rolling Bearing Based on Multisensor Fusion

    Kuosheng Jiang1, Chengrui Han1, Yasheng Chang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3329-3352, 2024, DOI:10.32604/cmes.2024.046729 - 11 March 2024

    Abstract Angular contact ball bearings have been widely used in machine tool spindles, and the bearing preload plays an important role in the performance of the spindle. In order to solve the problems of the traditional optimal preload prediction method limited by actual conditions and uncertainties, a roller bearing preload test method based on the improved D-S evidence theory multi-sensor fusion method was proposed. First, a novel controllable preload system is proposed and evaluated. Subsequently, multiple sensors are employed to collect data on the bearing parameters during preload application. Finally, a multisensor fusion algorithm is used More >

  • Open Access

    ARTICLE

    Real-Time Indoor Path Planning Using Object Detection for Autonomous Flying Robots

    Onder Alparslan*, Omer Cetin

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3355-3370, 2023, DOI:10.32604/iasc.2023.035689 - 15 March 2023

    Abstract Unknown closed spaces are a big challenge for the navigation of robots since there are no global and pre-defined positioning options in the area. One of the simplest and most efficient algorithms, the artificial potential field algorithm (APF), may provide real-time navigation in those places but fall into local minimum in some cases. To overcome this problem and to present alternative escape routes for a robot, possible crossing points in buildings may be detected by using object detection and included in the path planning algorithm. This study utilized a proposed sensor fusion method and an… More >

Displaying 1-10 on page 1 of 14. Per Page