Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    EGOP: A Server-Side Enhanced Architecture to Eliminate End-to-End Latency Caused by GOP Length in Live Streaming

    Kunpeng Zhou1, Tao Wu1,*, Jia Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.068160 - 10 November 2025

    Abstract Over the past few years, video live streaming has gained immense popularity as a leading internet application. In current solutions offered by cloud service providers, the Group of Pictures (GOP) length of the video source often significantly impacts end-to-end (E2E) latency. However, designing an optimized GOP structure to reduce this effect remains a significant challenge. This paper presents two key contributions. First, it explores how the GOP length at the video source influences E2E latency in mainstream cloud streaming services. Experimental results reveal that the mean E2E latency increases linearly with longer GOP lengths. Second, More >

  • Open Access

    ARTICLE

    Flatness Control with Cascaded Filtered High-Gain and Disturbance Observers for Rehabilitation Exoskeletons

    Sahbi Boubaker1,2,*, Salim Hadj Said3, Souad Kamel1, Habib Dimassi3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5703-5721, 2025, DOI:10.32604/cmc.2025.069047 - 23 October 2025

    Abstract Accurate trajectory tracking in lower-limb exoskeletons is challenged by the nonlinear, time-varying dynamics of human-robot interaction, limited sensor availability, and unknown external disturbances. This study proposes a novel control strategy that combines flatness-based control with two cascaded observers: a high-gain observer to estimate unmeasured joint velocities, and a nonlinear disturbance observer to reconstruct external torque disturbances in real time. These estimates are integrated into the control law to enable robust, state-feedback-based trajectory tracking. The approach is validated through simulation scenarios involving partial state measurements and abrupt external torque perturbations, reflecting realistic rehabilitation conditions. Results confirm More >

  • Open Access

    ARTICLE

    Radial Basis Function Neural Network Adaptive Controller for Wearable Upper-Limb Exoskeleton with Disturbance Observer

    Mohammad Soleimani Amiri1, Sahbi Boubaker2,3,*, Rizauddin Ramli4,*, Souad Kamel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3113-3133, 2025, DOI:10.32604/cmes.2025.069167 - 30 September 2025

    Abstract Disability is defined as a condition that makes it difficult for a person to perform certain vital activities. In recent years, the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent. However, controlling an exoskeleton for rehabilitation presents challenges due to their non-linear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton. To remedy these problems, this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons, addressing the challenges of nonlinear dynamics and external disturbances. The proposed controller integrated… More >

  • Open Access

    ARTICLE

    Fault-Tolerant Control of the Piston Position via Pressure Sensor and Its Estimation for Mini Motion Package of Electro-Hydraulic Actuator

    Huy Q. Tran1, Tan Nguyen Van2,*, Cheolkeun Ha3

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1053-1072, 2025, DOI:10.32604/cmc.2025.064386 - 29 August 2025

    Abstract Hydraulic-electric systems are widely utilized in various applications. However, over time, these systems may encounter random faults such as loose cables, ambient environmental noise, or sensor aging, leading to inaccurate sensor readings. These faults may result in system instability or compromise safety. In this paper, we propose a fault compensation control system to mitigate the effects of sensor faults and ensure system safety. Specifically, we utilize the pressure sensor within the system to implement the control process and evaluate performance based on the piston position. First, we develop a mathematical model to identify optimal parameters… More >

  • Open Access

    ARTICLE

    VPAFL: Verifiable Privacy-Preserving Aggregation for Federated Learning Based on Single Server

    Peizheng Lai1, Minqing Zhang1,2,*, Yixin Tang1, Ya Yue1, Fuqiang Di1,2

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2935-2957, 2025, DOI:10.32604/cmc.2025.065887 - 03 July 2025

    Abstract Federated Learning (FL) has emerged as a promising distributed machine learning paradigm that enables multi-party collaborative training while eliminating the need for raw data sharing. However, its reliance on a server introduces critical security vulnerabilities: malicious servers can infer private information from received local model updates or deliberately manipulate aggregation results. Consequently, achieving verifiable aggregation without compromising client privacy remains a critical challenge. To address these problem, we propose a reversible data hiding in encrypted domains (RDHED) scheme, which designs joint secret message embedding and extraction mechanism. This approach enables clients to embed secret messages… More >

  • Open Access

    ARTICLE

    Numerical Simulation on Heat Dissipation Characteristics of Electronic Components with Different Heat Sink Arrangements in High-Performance Server

    Zerui Chen*, Xin Wu, Houpeng Hu, Yang Zhou, Shang Yang

    Frontiers in Heat and Mass Transfer, Vol.23, No.3, pp. 991-1011, 2025, DOI:10.32604/fhmt.2025.065936 - 30 June 2025

    Abstract As the integration of electronic components in high-performance servers increases, heat generation significantly impacts performance and raises failure rates. Therefore, heat dissipation has become a critical concern in electronic circuit design. This study uses numerical simulations to investigate the heat dissipation characteristics of electronic components in air-cooled servers. By adjusting airflow speed, heat sink configurations, and the arrangement of straight-fin heat sinks, we optimize heat dissipation performance and analyze the mechanisms at different airflow speeds. The results show that, at the same airflow speed, the temperature of the heat sink is lower than that of… More >

  • Open Access

    ARTICLE

    Non-Singular Fast Terminal Sliding Mode Control of PMSM Based on Disturbance Observer

    Lang Qin1, Zhengrui Jiang1, Xueshu Xing2, Xiao Wang1, Yaohua Yin2, Yuhui Zhou2, Zhiqin He1,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5279-5298, 2025, DOI:10.32604/cmc.2025.063358 - 19 May 2025

    Abstract In permanent magnet synchronous motor (PMSM) control, the jitter problem affects the system performance, so a novel reaching law is proposed to construct a non-singular fast terminal sliding mode controller (NFTSMC) to reduce the jitter. To enhance the immunity of the system, a disturbance observer is designed to observe and compensate for the disturbance to the sliding mode controller. In addition, considering that the controller parameters are difficult to adjust, and the traditional zebra optimization algorithm (ZOA) is prone to converge prematurely and fall into local optimum when solving the optimal solution, the improved zebra… More >

  • Open Access

    ARTICLE

    Numerical Investigation on Thermal Performance of Single-Phase Immersion Cooling Systems Using Oil Coolant

    Yiming Rongyang1, Zhenyue Yu1, Ruisheng Liang2,*, Wei Su1, Jianjian Wei2,3

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 279-298, 2025, DOI:10.32604/fhmt.2025.059637 - 26 February 2025

    Abstract Data center cooling systems are substantial energy consumers, and managing the heat generated by electronic devices is becoming more complex as chip power levels continue to rise. The single-phase immersion cooling (SPIC) server with oil coolant is numerically investigated using the validated Re-Normalization Group (RNG) k-ε model. For the investigated scenarios where coolant velocity at the tank inlet is 0.004 m/s and the total power is 740 W, the heat transfer between the heat sinks and the coolant is dominated by natural convection, although forced convection mediates the overall heat transfer inside the tank. The maximum… More >

  • Open Access

    ARTICLE

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

    Khawaja Tahir Mehmood1,2,*, Shahid Atiq1, Intisar Ali Sajjad3, Muhammad Majid Hussain4, Malik M. Abdul Basit2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1673-1708, 2024, DOI:10.32604/cmes.2024.053903 - 27 September 2024

    Abstract Software-Defined Networking (SDN), with segregated data and control planes, provides faster data routing, stability, and enhanced quality metrics, such as throughput (Th), maximum available bandwidth (Bd(max)), data transfer (DTransfer), and reduction in end-to-end delay (D(E-E)). This paper explores the critical work of deploying SDN in large­scale Data Center Networks (DCNs) to enhance its Quality of Service (QoS) parameters, using logically distributed control configurations. There is a noticeable increase in Delay(E-E) when adopting SDN with a unified (single) control structure in big DCNs to handle Hypertext Transfer Protocol (HTTP) requests causing a reduction in network quality parameters (Bd(max), Th, DTransfer, D(E-E),… More > Graphic Abstract

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

  • Open Access

    REVIEW

    The Impact of Domain Name Server (DNS) over Hypertext Transfer Protocol Secure (HTTPS) on Cyber Security: Limitations, Challenges, and Detection Techniques

    Muhammad Dawood1, Shanshan Tu1, Chuangbai Xiao1, Muhammad Haris2, Hisham Alasmary3, Muhammad Waqas4,5,*, Sadaqat Ur Rehman6

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4513-4542, 2024, DOI:10.32604/cmc.2024.050049 - 12 September 2024

    Abstract The DNS over HTTPS (Hypertext Transfer Protocol Secure) (DoH) is a new technology that encrypts DNS traffic, enhancing the privacy and security of end-users. However, the adoption of DoH is still facing several research challenges, such as ensuring security, compatibility, standardization, performance, privacy, and increasing user awareness. DoH significantly impacts network security, including better end-user privacy and security, challenges for network security professionals, increasing usage of encrypted malware communication, and difficulty adapting DNS-based security measures. Therefore, it is important to understand the impact of DoH on network security and develop new privacy-preserving techniques to allow More >

Displaying 1-10 on page 1 of 57. Per Page