Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (643)
  • Open Access

    ARTICLE

    A New Dataset for Network Flooding Attacks in SDN-Based IoT Environments

    Nader Karmous1, Wadii Jlassi1, Mohamed Ould-Elhassen Aoueileyine1, Imen Filali2,*, Ridha Bouallegue1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4363-4393, 2025, DOI:10.32604/cmes.2025.074178 - 23 December 2025

    Abstract This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments, built upon a novel, synthetic multi-vector dataset generated in a Mininet-Ryu testbed using real-time flow-based labeling. The proposed model is based on the XGBoost algorithm, optimized with Principal Component Analysis for dimensionality reduction, utilizing lightweight flow-level features extracted from OpenFlow statistics to classify attacks across critical IoT protocols including TCP, UDP, HTTP, MQTT, and CoAP. The model employs lightweight flow-level features extracted from OpenFlow statistics to ensure low computational overhead and fast processing. Performance was rigorously… More >

  • Open Access

    ARTICLE

    Enhancement of Medical Imaging Technique for Diabetic Retinopathy: Realistic Synthetic Image Generation Using GenAI

    Damodharan Palaniappan1, Tan Kuan Tak2, K. Vijayan3, Balajee Maram4, Pravin R Kshirsagar5, Naim Ahmad6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4107-4127, 2025, DOI:10.32604/cmes.2025.073387 - 23 December 2025

    Abstract A phase-aware cross-modal framework is presented that synthesizes UWF_FA from non-invasive UWF_RI for diabetic retinopathy (DR) stratification. A curated cohort of 1198 patients (2915 UWF_RI and 17,854 UWF_FA images) with strict registration quality supports training across three angiographic phases (initial, mid, final). The generator is based on a modified pix2pixHD with an added Gradient Variance Loss to better preserve microvasculature, and is evaluated using MAE, PSNR, SSIM, and MS-SSIM on held-out pairs. Quantitatively, the mid phase achieves the lowest MAE (98.76 ± 42.67), while SSIM remains high across phases. Expert review shows substantial agreement (Cohen’s More >

  • Open Access

    REVIEW

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

    Mirza Murad Baig1, Muhammad Rehan Faheem2,*, Lal Khan3,*, Hannan Adeel2, Syed Asim Ali Shah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2895-2935, 2025, DOI:10.32604/cmes.2025.073172 - 23 December 2025

    Abstract With growing urban areas, the climate continues to change as a result of growing populations, and hence, the demand for better emergency response systems has become more important than ever. Human Behaviour Classification (HBC) systems have started to play a vital role by analysing data from different sources to detect signs of emergencies. These systems are being used in many critical areas like healthcare, public safety, and disaster management to improve response time and to prepare ahead of time. But detecting human behaviour in such stressful conditions is not simple; it often comes with noisy… More > Graphic Abstract

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

  • Open Access

    ARTICLE

    PPG Based Digital Biomarker for Diabetes Detection with Multiset Spatiotemporal Feature Fusion and XAI

    Mubashir Ali1,2, Jingzhen Li1, Zedong Nie1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4153-4177, 2025, DOI:10.32604/cmes.2025.073048 - 23 December 2025

    Abstract Diabetes imposes a substantial burden on global healthcare systems. Worldwide, nearly half of individuals with diabetes remain undiagnosed, while conventional diagnostic techniques are often invasive, painful, and expensive. In this study, we propose a noninvasive approach for diabetes detection using photoplethysmography (PPG), which is widely integrated into modern wearable devices. First, we derived velocity plethysmography (VPG) and acceleration plethysmography (APG) signals from PPG to construct multi-channel waveform representations. Second, we introduced a novel multiset spatiotemporal feature fusion framework that integrates hand-crafted temporal, statistical, and nonlinear features with recursive feature elimination and deep feature extraction using… More >

  • Open Access

    ARTICLE

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

    Jeongsu Park1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3913-3948, 2025, DOI:10.32604/cmes.2025.072261 - 23 December 2025

    Abstract Time series anomaly detection is critical in domains such as manufacturing, finance, and cybersecurity. Recent generative AI models, particularly Transformer- and Autoencoder-based architectures, show strong accuracy but their robustness under noisy conditions is less understood. This study evaluates three representative models—AnomalyTransformer, TranAD, and USAD—on the Server Machine Dataset (SMD) and cross-domain benchmarks including the Soil Moisture Active Passive (SMAP) dataset, the Mars Science Laboratory (MSL) dataset, and the Secure Water Treatment (SWaT) testbed. Seven noise settings (five canonical, two mixed) at multiple intensities are tested under fixed clean-data training, with variations in window, stride, and More > Graphic Abstract

    Robustness and Performance Comparison of Generative AI Time Series Anomaly Detection under Noise

  • Open Access

    ARTICLE

    Optimization of Cement-Based Slurry Mix Design Incorporating Silica Fume for Enhanced Setting and Strength Performance

    Ke Li1, Bendong Liu1, Yulong Han2, Yafeng Zhang3, Chunqi Yang1, Dawei Yin2, Yazhou Zhang3, Wantao Ding4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2779-2793, 2025, DOI:10.32604/fdmp.2025.072671 - 01 December 2025

    Abstract Traditional cement-based slurries are often constrained by excessive cement consumption, prolonged setting times, and limited controllability, which hinder their broader engineering applications. To overcome these challenges, this study focuses on optimizing ordinary cement-based slurry through the incorporation of targeted additives and rational adjustment of mix proportions, with the aim of developing a rapid-setting, early-strength cementitious system. In particular, a series of comparative and orthogonal experiments were conducted to systematically examine the evolution of the slurry’s macroscopic properties. In addition, the response surface methodology (RSM) was introduced to reveal the interaction mechanisms among key parameters, thereby… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Prediction of Seepage Flow in Soil-Like Porous Media

    Zhenzhen Shen1,2, Kang Yang2, Dengfeng Wei2, Quansheng Liang2, Zhenpeng Ma2, Hong Wang2, Keyu Wang2, Chunwei Zhang2, Xiaohu Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2741-2760, 2025, DOI:10.32604/fdmp.2025.070395 - 01 December 2025

    Abstract The rapid prediction of seepage mass flow in soil is essential for understanding fluid transport in porous media. This study proposes a new method for fast prediction of soil seepage mass flow by combining mesoscopic modeling with deep learning. Porous media structures were generated using the Quartet Structure Generation Set (QSGS) method, and a mesoscopic-scale seepage calculation model was applied to compute flow rates. These results were then used to train a deep learning model for rapid prediction. The analysis shows that larger average pore diameters lead to higher internal flow velocities and mass flow More >

  • Open Access

    ARTICLE

    Cross-Dataset Transformer-IDS with Calibration and AUC Optimization (Evaluated on NSL-KDD, UNSW-NB15, CIC-IDS2017)

    Chaonan Xin*, Keqing Xu

    Journal of Cyber Security, Vol.7, pp. 483-503, 2025, DOI:10.32604/jcs.2025.071627 - 28 November 2025

    Abstract Intrusion Detection Systems (IDS) have achieved high accuracy on benchmark datasets, yet models often fail to generalize across different network environments. In this paper, we propose Transformer-IDS, a transformer-based network intrusion detection model designed for cross-dataset generalization. The model incorporates a classification token, multi-head self-attention, and embedding layers to learn versatile features, and it introduces a calibration module and an AUC-oriented optimization objective to improve reliability and ranking performance. We evaluate Transformer-IDS on three prominent datasets (NSL-KDD, UNSW-NB15, CIC-IDS2017) in both within-dataset and cross-dataset scenarios. Results demonstrate that while conventional deep IDS models (e.g., CNN-LSTM More >

  • Open Access

    ARTICLE

    A Comprehensive Brain MRI and Neurodevelopmental Dataset in Children with Tetralogy of Fallot

    Yang Xu1,#, Yaqi Zhang2,#, Meijiao Zhu3, Pengcheng Xue4, Siyu Ma1, Di Yu1, Liang Hu1, Yuxi Zhang1, Wei Peng1, Jirong Qi1, Xuyun Wen4, Ming Yang3, Xuming Mo1,2,5,*

    Congenital Heart Disease, Vol.20, No.5, pp. 559-570, 2025, DOI:10.32604/chd.2025.072242 - 30 November 2025

    Abstract Background: The life-course management of children with tetralogy of Fallot (TOF) has focused on demonstrating brain structural alterations, developmental trajectories, and cognition-related changes that unfold over time. Methods: We introduce an magnetic resonance imaging (MRI) dataset comprising TOF children who underwent brain MRI scanning and cross-sectional neurocognitive follow-up. The dataset includes brain three-dimensional T1-weighted imaging (3D-T1WI), three-dimensional T2-weighted imaging (3D-T2WI), and neurodevelopmental evaluations using the Wechsler Preschool and Primary Scale of Intelligence–Fourth Edition (WPPSI-IV). Results: Thirty-one children with TOF (age range: 4–33 months; 18 males) were recruited and completed corrective surgery at the Children’s Hospital of Nanjing More >

  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

Displaying 21-30 on page 3 of 643. Per Page