Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (256)
  • Open Access


    A Fin Design Problem in Determining the Optimum Shape of Non-Fourier Spine and Longitudinal Fins

    Cheng-Hung Huang1, Hsin-Hsien Wu2

    CMC-Computers, Materials & Continua, Vol.5, No.3, pp. 197-212, 2007, DOI:10.3970/cmc.2007.005.197

    Abstract The conjugate gradient method (CGM) is applied in an inverse fin design problem in estimating the optimum shapes for the non-Fourier spine and longitudinal fins based on the desired fin efficiency and fin volume at the specified time. One of the advantages in using CGM in the inverse design problem lies in that it can handle problems having a huge number of design parameters easily and converges very fast.
    The validity of using CGM in solving the present inverse design problem is justified by performing the numerical experiments. Several test cases involving different design fin efficiency, design fin volume, specified… More >

  • Open Access


    Fourier Analysis of Mode Shapes of Damaged Beams

    Kanchi Venkatesulu Reddy1, Ranjan Ganguli2

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 79-98, 2007, DOI:10.3970/cmc.2007.005.079

    Abstract This paper investigates the effect of damage on beams with fixed boundary conditions using Fourier analysis of the mode shapes in spatial domain. A finite element model is used to obtain the mode shapes of a damaged fixed-fixed beam. Then the damaged beams are studied using a spatial Fourier analysis. This approach contrasts with the typical time domain application of Fourier analysis for vibration problems. It is found that damage causes considerable change in the Fourier coefficients of the mode shapes. The Fourier coefficients, especially the higher harmonics, are found to be sensitive to both damage size and location and… More >

  • Open Access


    Mechanics of Elastomer--Shim Laminates

    A. H. Muhr1

    CMC-Computers, Materials & Continua, Vol.5, No.1, pp. 11-30, 2007, DOI:10.3970/cmc.2007.005.011

    Abstract The mechanics of laminates of elastomer and shims of high modulus material are reviewed. Such structures are often built to provide engineering components with specified, and quite different, stiffnesses in different modes of deformation. The shims may either be rigid or flexible, flat or curved, but are usually close to inextensible, being made of a high modulus material such as steel. On the other hand, rubber has an exceptionally low shear modulus, about one thousandth of its bulk modulus, so that shear of the rubber layers and flexure of the high modulus layers (if thin) are the dominant mechanisms of… More >

  • Open Access


    Real-Time Visual Tracking with Compact Shape and Color Feature

    Zhenguo Gao1, Shixiong Xia1, Yikun Zhang1, Rui Yao1,*, Jiaqi Zhao1, Qiang Niu1, Haifeng Jiang2

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 509-521, 2018, DOI: 10.3970/cmc.2018.02634

    Abstract The colour feature is often used in the object tracking. The tracking methods extract the colour features of the object and the background, and distinguish them by a classifier. However, these existing methods simply use the colour information of the target pixels and do not consider the shape feature of the target, so that the description capability of the feature is weak. Moreover, incorporating shape information often leads to large feature dimension, which is not conducive to real-time object tracking. Recently, the emergence of visual tracking methods based on deep learning has also greatly increased the demand for computing resources… More >

  • Open Access


    Effect of Different Shapes of Conformal Cooling Channel on the Parameters of Injection Molding

    Mahesh S. Shinde1,*, Kishor M. Ashtankar1

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 287-306, 2018, DOI:10.3970/cmc.2018.054.287

    Abstract Cooling system improvement is important in injection molding to get better quality and productivity. The aim of this paper was to compare the different shapes of the conformal cooling channels (CCC) with constant surface area and CCC with constant volume in injection molding using Mold-flow Insight 2016 software. Also the CCC results were compared with conventional cooling channels. Four different shapes of the CCC such as circular, elliptical, rectangular and semi-circular were proposed. The locations of the cooling channels were also kept constant. The results in terms of cooling time, cycle time reduction and improvement in quality of the product… More >

  • Open Access


    A New Constitutive Model for Ferromagnetic Shape Memory Alloy Particulate Composites

    H.T. Li1,2,3, Z.Y. Guo1,2, J. Wen1,2, H.G. Xiang1,2, Y.X. Zhang1,2

    CMC-Computers, Materials & Continua, Vol.48, No.2, pp. 91-102, 2015, DOI:10.3970/cmc.2015.048.091

    Abstract Ferromagnetic shape memory alloy particulate composites, which combine the advantages of large magnetic field induced deformation in ferromagnetic shape memory alloys (FSMAs) with high ductility in matrix, can be used for sensor and actuator applications. In this paper, a new constitutive model was proposed to predict the magneto-mechanical behaviors of FSMA particulate composites based on the description for FSMAs, incorporating Eshelby’s equivalent inclusion theory. The influencing factors, such as volume fraction of particles and elastic modulus, were analyzed. The magnetic field induced strain and other mechanical properties under different magnetic field intensity were also investigated. More >

  • Open Access


    Effects of Geometry and Shape on the Mechanical Behaviors of Silicon Nanowires

    Qunfeng Liu1,2, Liang Wang1, gping Shen1

    CMC-Computers, Materials & Continua, Vol.46, No.2, pp. 105-123, 2015, DOI:10.3970/cmc.2015.046.105

    Abstract Molecular dynamics simulations have been performed to investigate the effects of cross section geometry and shape on the mechanical behaviors of silicon nanowires (Si NWs) under tensile loading. The results show that elasticity of <100> rectangular Si NWs depends on their cross section aspect ratios while the elastic limits of <110> and <111> wires show geometry independence. Despite the significant influence of axial orientation, both yield stress and Young's Modulus show the remarkable shape dependence for wires with various regular cross sections. Additionally, underlying mechanism for the geometry and shape effects on mechanical behavior are discussed based on the fundamental… More >

  • Open Access


    On the Tactile Sensing Based on the Smart Materials

    Ligia Munteanu1, Dan Dumitriu1, Veturia Chiroiu1, Cornel Bri¸san2, Doina Marin1

    CMC-Computers, Materials & Continua, Vol.46, No.2, pp. 79-103, 2015, DOI:10.3970/cmc.2015.046.079

    Abstract A flexible finger with muscles made of Nitinol wires and the skin made of auxetic material is analyzed from the tactile sensing point of view. The recognizing of the shape and texture of 3D objects is performed by simulation the action of an array of nanopiezotronic transistors integrated into the skin. The array of nanopiezotronic transistors makes possible the detection of the pressure-induced changes in the auxetic skin. The shape and texture of the objects is best estimated by determining the surface and texture as an n-ellipsoid defined by 12 parameters. An inverse problem is solved in order to find… More >

  • Open Access


    Magneto-Mechanical Finite Element Analysis of Single Crystalline Ni2MnGa Ferromagnetic Shape Memory Alloy

    Yuping Zhu1,2, Tao Chen1, Kai Yu1

    CMC-Computers, Materials & Continua, Vol.43, No.2, pp. 97-108, 2014, DOI:10.3970/cmc.2014.043.097

    Abstract Based on an existing micromechanical constitutive model for Ni2MnGa ferromagnetic shape memory alloy single crystals, a three-dimensional quasi-static isothermal incremental constitutive model that is suitable for finite element analysis is derived by using Hamilton's variational principle. This equation sets up the coupling relation between the magnetic vector potential and the mechanical displacement. By using the incremental equation and ANSYS software, the mechanical behaviors of martensitic variant reorientation for Ni2MnGa single crystals are analyzed under magneto-mechanical coupling action. And the finite element results agree well with the experimental data. The methods used in the paper can well describe the mechanical behaviors… More >

  • Open Access


    Characteristics of a Single I-shaped Slitted Zeroth-Order Resonance Mushroom Antenna based on Metamaterials

    Cherl-Hee Lee, Jonghun Lee1

    CMC-Computers, Materials & Continua, Vol.39, No.3, pp. 289-299, 2014, DOI:10.3970/cmc.2014.039.289

    Abstract The broadband design of a metamaterials-based zeroth-order resonance (ZOR) mushroom antenna with an I-shaped slit is presented and experimentally studied. The presented metamaterials-based antenna uses a unit cell based on a composite right/left handed (CRLH) transmission line and can provide a ZOR frequency. By designing the I-shaped slot resonance frequency adjacently to the ZOR frequency, the presented antenna can achieve a 10-dB bandwidth enhancement of roughly 7 times with respect to a conventional rectangular-shaped mushroom structure. More >

Displaying 241-250 on page 25 of 256. Per Page