Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (291)
  • Open Access

    ABSTRACT

    Synthesis and experimental research of shape memory epoxy series

    L.Y. Wang, W. B. Song Z.D. Wang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.1, pp. 13-14, 2011, DOI:10.3970/icces.2011.017.013

    Abstract Shape memory epoxies and their composites have great potential applications in future deployable space structures industry. In this study six types of shape memory epoxies with different shape transition temperatures were synthesized by varying the curing agents and their contents. Thermal frozen/recovery test, DSC and DMA were performed to investigate their shape memory behaviors and thermomechanical properties. Further discussions about the testing results were presented with consideration of the microstructure. More >

  • Open Access

    ABSTRACT

    Numerical and theoretical studies of the buckling of shape memory tape spring

    Zhengfa Li, Weibin Song, Zhengdao Wang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.1, pp. 11-12, 2011, DOI:10.3970/icces.2011.017.011

    Abstract By using the high froze/recovery strains of shape memory polymers to meet the requirements of deployable space structures, the folding behavior of shape memory tape spring structures consisting of shape memory polymer and metal spring was analyzed. Firstly, numerical simulations were performed on the buckling modes and affecting factors under the equal- and opposite-sense bends. The results show that the folding deformations of such structure in the two cases are completely different. The equal-sense bending leads to the structure buckled abruptly, but gradual torsion buckling is received in the case of opposite-sense bending. The critical More >

  • Open Access

    ABSTRACT

    Shape optimization of nonlinear structure using adjoint variable approach and gradient-based Kriging method

    Zhenhan Yao, Yintao Wei

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.016.051

    Abstract Shape optimization is very important in many engineering fields. As conventional engineering design, the shape optimization is generally based on the finite element analysis. Because many engineering strutures are related to different nonlinear problems in their working state, the analysis for each design sample is quite time consuming. For example for the shape optimization of automotive tires, it is related to the geometrical, material nonlinearity, and boundary nonlinearity caused by the contact problem. Therefore, the finite element analysis combined with sensitivity analysis to get more information for each design sample is a strategy usually adopted.… More >

  • Open Access

    ABSTRACT

    Verification and Analysis of Transient Hydroplaning Performance for inflated Radial Tire with V-shaped Groove Tread Pattern on the Fluid Structure Interaction Scheme

    Syh-Tsang Jenq, Yuen-Sheng Chiu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.1, pp. 15-16, 2011, DOI:10.3970/icces.2011.016.015

    Abstract Current work studies the transient hydroplaning behaviors of 200 kPa inflated pneumatic radial tires with V-shaped grooved tread patterns and then rolls over the water film with a thickness of 10 mm. we also perform complete numerical simulations in order to know how to elevate the hydroplaning capability. Tires were numerically loaded with a quarter car weight of 4 kN on initial step, and then subsequently accelerated from rest rolling over a water film with a thickness of 10 mm on top of a flat roadway. Tire structure is composed of outer rubber tread and… More >

  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World B: Emergent Anisotropy of the Cytoskeleton Correlates to Volume and Shape Changing Stress Exposure

    Hana Chang*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 297-318, 2011, DOI:10.3970/mcb.2011.008.297

    Abstract In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness… More >

  • Open Access

    ARTICLE

    Structure - Function Relationships in the Stem Cell's Mechanical World A: Seeding Protocols as a Means to Control Shape and Fate of Live Stem Cells

    Joshua A. Zimmermann*, Melissa L. Knothe Tate∗,†,‡

    Molecular & Cellular Biomechanics, Vol.8, No.4, pp. 275-296, 2011, DOI:10.3970/mcb.2011.008.275

    Abstract Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to… More >

  • Open Access

    ARTICLE

    Three Dimensional Acoustic Shape Sensitivity Analysis by Means of Adjoint Variable Method and Fast Multipole Boundary Element Approach

    C.J. Zheng1, H.B. Chen1, T. Matsumoto2, T. Takahashi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.1, pp. 1-30, 2011, DOI:10.3970/cmes.2011.079.001

    Abstract A fast multipole boundary element approach to the shape sensitivity analysis of three dimensional acoustic wave problems is developed in this study based on the adjoint variable method. The concept of material derivative is employed in the derivation. The Burton-Miller formula which is a linear combination of the conventional and normal derivative boundary integral equations is adopted to cope with the non-uniqueness problem when solving exterior acoustic wave problems. Constant elements are used to discretize the boundary surface so that the strongly- and hyper-singular boundary integrals contained in the formulations can be evaluated explicitly and More >

  • Open Access

    ARTICLE

    A Constitutive Model for Porous Shape Memory Alloys Considering the Effect of Hydrostatic Stress

    Bingfei Liu1, Guansuo Dui1,2, Yuping Zhu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 247-276, 2011, DOI:10.3970/cmes.2011.078.247

    Abstract A constitutive model considering the effect hydrostatic stresses induced by porosity on the macroscopic behavior of porous Shape Memory Alloys (SMAs) is developed in this paper. First, a unit-cell model is adopted to establish the constitutive relations for the porous SMAs with SMA matrix and the porosity taken to be voids. Dilatational plasticity theory is then generalized for the SMA matrix. Based on an approximation of the velocity field and the upper bound theory, an explicit yield function for the porous SMA is derived from micromechanical considerations. Finally, an example for the uniaxial response under More >

  • Open Access

    ARTICLE

    Topological Optimization of Anisotropic Heat Conducting Devices using Bezier-Smoothed Boundary Representation

    C.T.M. Anflor1, R.J. Marczak2

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 151-168, 2011, DOI:10.3970/cmes.2011.078.151

    Abstract This paper aims to demonstrate the final result of an optimization process when a smooth technique is introduced between intermediary iterations of a topological optimization. In a topological optimization process is usual irregular boundary results as the final shape. This boundary irregularity occurs when the way of the material is removed is not very suitable. Avoiding an optimization post-processing procedure some techniques of smooth are implemented in the original optimization code. In order to attain a regular boundary a smoothness technique is employed, which is, Bezier curves. An algorithm was also developed to detect during More >

  • Open Access

    ARTICLE

    Acoustic Design Shape and Topology Sensitivity Formulations Based on Adjoint Method and BEM

    T. Matsumoto1, T. Yamada1, T. Takahashi1, C.J. Zheng2, S. Harada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.2, pp. 77-94, 2011, DOI:10.3970/cmes.2011.078.077

    Abstract Shape design and topology sensitivity formulations for acoustic problems based on adjoint method and the boundary element method are presented and are applied to shape sensitivity analysis and topology optimization of acoustic field. The objective function is assumed to consist only of boundary integrals and quantities defined at certain number of discrete points. The adjoint field is defined so that the sensitivity of the objective function does not include the unknown sensitivity coefficients of the sound pressures and particle velocities on the boundary and in the domain. Since the final sensitivity expression does not have More >

Displaying 221-230 on page 23 of 291. Per Page