Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (267)
  • Open Access

    ARTICLE

    A Constitutive Model for Porous Shape Memory Alloys Considering the Effect of Hydrostatic Stress

    Bingfei Liu1, Guansuo Dui1,2, Yuping Zhu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 247-276, 2011, DOI:10.3970/cmes.2011.078.247

    Abstract A constitutive model considering the effect hydrostatic stresses induced by porosity on the macroscopic behavior of porous Shape Memory Alloys (SMAs) is developed in this paper. First, a unit-cell model is adopted to establish the constitutive relations for the porous SMAs with SMA matrix and the porosity taken to be voids. Dilatational plasticity theory is then generalized for the SMA matrix. Based on an approximation of the velocity field and the upper bound theory, an explicit yield function for the porous SMA is derived from micromechanical considerations. Finally, an example for the uniaxial response under More >

  • Open Access

    ARTICLE

    Topological Optimization of Anisotropic Heat Conducting Devices using Bezier-Smoothed Boundary Representation

    C.T.M. Anflor1, R.J. Marczak2

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.3&4, pp. 151-168, 2011, DOI:10.3970/cmes.2011.078.151

    Abstract This paper aims to demonstrate the final result of an optimization process when a smooth technique is introduced between intermediary iterations of a topological optimization. In a topological optimization process is usual irregular boundary results as the final shape. This boundary irregularity occurs when the way of the material is removed is not very suitable. Avoiding an optimization post-processing procedure some techniques of smooth are implemented in the original optimization code. In order to attain a regular boundary a smoothness technique is employed, which is, Bezier curves. An algorithm was also developed to detect during More >

  • Open Access

    ARTICLE

    Acoustic Design Shape and Topology Sensitivity Formulations Based on Adjoint Method and BEM

    T. Matsumoto1, T. Yamada1, T. Takahashi1, C.J. Zheng2, S. Harada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.2, pp. 77-94, 2011, DOI:10.3970/cmes.2011.078.077

    Abstract Shape design and topology sensitivity formulations for acoustic problems based on adjoint method and the boundary element method are presented and are applied to shape sensitivity analysis and topology optimization of acoustic field. The objective function is assumed to consist only of boundary integrals and quantities defined at certain number of discrete points. The adjoint field is defined so that the sensitivity of the objective function does not include the unknown sensitivity coefficients of the sound pressures and particle velocities on the boundary and in the domain. Since the final sensitivity expression does not have More >

  • Open Access

    ARTICLE

    The Reproducing Kernel DMS-FEM: 3D Shape Functions and Applications to Linear Solid Mechanics

    Sunilkumar N1, D Roy1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.3, pp. 249-284, 2010, DOI:10.3970/cmes.2010.066.249

    Abstract We propose a family of 3D versions of a smooth finite element method (Sunilkumar and Roy 2010), wherein the globally smooth shape functions are derivable through the condition of polynomial reproduction with the tetrahedral B-splines (DMS-splines) or tensor-product forms of triangular B-splines and 1D NURBS bases acting as the kernel functions. While the domain decomposition is accomplished through tetrahedral or triangular prism elements, an additional requirement here is an appropriate generation of knotclouds around the element vertices or corners. The possibility of sensitive dependence of numerical solutions to the placements of knotclouds is largely arrested… More >

  • Open Access

    ARTICLE

    Shape Optimization in Time-Dependent Navier-Stokes Flows via Function Space Parametrization Technique1

    Zhiming Gao2, Yichen Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.66, No.2, pp. 135-164, 2010, DOI:10.3970/cmes.2010.066.135

    Abstract Shape optimization technique has an increasing role in fluid dynamics problems governed by distributed parameter systems. In this paper, we present the problem of shape optimization of two dimensional viscous flow governed by the time dependent Navier-Stokes equations. The minimization problem of the viscous dissipated energy was established in the fluid domain. We derive the structure of continuous shape gradient of the cost functional by using the differentiability of a saddle point formulation with a function space parametrization technique. Finally a gradient type algorithm with mesh adaptation and mesh movement strategies is successfully and efficiently More >

  • Open Access

    ARTICLE

    A Smooth Finite Element Method Based on Reproducing Kernel DMS-Splines

    Sunilkumar N1, D Roy1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.65, No.2, pp. 107-154, 2010, DOI:10.3970/cmes.2010.065.107

    Abstract The element-based piecewise smooth functional approximation in the conventional finite element method (FEM) results in discontinuous first and higher order derivatives across element boundaries. Despite the significant advantages of the FEM in modelling complicated geometries, a motivation in developing mesh-free methods has been the ease with which higher order globally smooth shape functions can be derived via the reproduction of polynomials. There is thus a case for combining these advantages in a so-called hybrid scheme or a 'smooth FEM' that, whilst retaining the popular mesh-based discretization, obtains shape functions with uniform Cp(p ≥ 1) continuity. One… More >

  • Open Access

    ARTICLE

    Engineering Model to Predict Behaviors of Shape Memory Alloy Wire for Vibration Applications

    M.K. Kang1, E.H. Kim1, M.S. Rim1, I. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.3, pp. 227-250, 2010, DOI:10.3970/cmes.2010.064.227

    Abstract An engineering model for predicting the behavior of shape memory alloy (SMA) wire is presented in this study. Piecewise linear relations between stress and strain at a given temperature are assumed and the mixture rule of Reuss bounds is applied to get the elastic modulus of the SMAs in the mixed phase. Critical stresses and strains of the start and finish of the phase transformation are calculated at a given temperature by means of a linear constitutive equation and a stress-temperature diagram. Transformation conditions based on the critical stresses are translated in terms of critical More >

  • Open Access

    ARTICLE

    Application of Energy Finite Element Method to High-frequency Structural-acoustic Coupling of an Aircraft Cabin with Truncated Conical Shape

    M. X. Xie1, H. L. Chen1, J. H. Wu1, F. G. Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.61, No.1, pp. 1-22, 2010, DOI:10.3970/cmes.2010.061.001

    Abstract Energy finite element method (EFEM) is a new method to solve high-frequency structural-acoustic coupling problems, but its use has been limited to solving simple structures such as rods, beams, plates and combined structures. In this paper, the high-frequency structural-acoustic coupling characteristics of an aircraft cabin are simulated by regarding the shell as a number of flat shell elements connected with a certain angle in EFEM. Two tests validated the method employed in this paper. First, the structural response analysis of a cylinder was calculated in two ways: dividing the shell by axis-symmetric shells after deriving… More >

  • Open Access

    ARTICLE

    Shape Memory Alloy: from Constitutive Modeling to Finite Element Analysis of Stent Deployment

    F. Auricchio1,2,3,4,1,5,1, M. Contisup>1,5,S. Morgantisup>1,, A. Reali1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.57, No.3, pp. 225-244, 2010, DOI:10.3970/cmes.2010.057.225

    Abstract The use of shape memory alloys (SMA) in an increasing number of applications in many fields of engineering, and in particular in biomedical engineering, is leading to a growing interest toward an exhaustive modeling of their macroscopic behavior in order to construct reliable simulation tools for SMA-based devices. In this paper, we review the properties of a robust three-dimensional model able to reproduce both pseudo-elastic and shape-memory effect; then we calibrate the model parameters on experimental data and, finally, we exploit the model to perform the finite element analysis of pseudo-elastic Nitinol stent deployment in More >

  • Open Access

    ARTICLE

    An Optimal Fin Design Problem in Estimating the Shapes of Longitudinal and Spine Fully Wet Fins

    Cheng-Hung Huang1, Yun-Lung Chung1

    CMES-Computer Modeling in Engineering & Sciences, Vol.44, No.3, pp. 249-280, 2009, DOI:10.3970/cmes.2009.044.249

    Abstract The optimum shapes for the longitudinal and spine fully wet fins are estimated in the present inverse design problem by using the conjugate gradient method (CGM) based on the desired fin efficiency and fin volume. One of the advantages in using CGM in the inverse design problem lies in that it can handle problems having a large number of unknown parameters easily and converges very fast. Results obtained by using the CGM to solve the inverse design problems are justified based on the numerical experiments. Results show that when the Biot number and relative humidity More >

Displaying 221-230 on page 23 of 267. Per Page