Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (330)
  • Open Access

    ARTICLE

    VMFD: Virtual Meetings Fatigue Detector Using Eye Polygon Area and Dlib Shape Indicator

    Hafsa Sidaq1, Lei Wang1, Sghaier Guizani2,*, Hussain Haider3, Ateeq Ur Rehman4,*, Habib Hamam5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071254 - 12 January 2026

    Abstract Numerous sectors, such as education, the IT sector, and corporate organizations, transitioned to virtual meetings after the COVID-19 crisis. Organizations now seek to assess participants’ fatigue levels in online meetings to remain competitive. Instructors cannot effectively monitor every individual in a virtual environment, which raises significant concerns about participant fatigue. Our proposed system monitors fatigue, identifying attentive and drowsy individuals throughout the online session. We leverage Dlib’s pre-trained facial landmark detector and focus on the eye landmarks only, offering a more detailed analysis for predicting eye opening and closing of the eyes, rather than focusing… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part II—Non-Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3091-3122, 2025, DOI:10.32604/fdmp.2025.070082 - 31 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have emerged as a focal point of research due to their remarkable potential for structural vibration mitigation. Yet, progress in this field remains constrained by an incomplete understanding of the fundamental mechanisms governing sloshing-induced loads in liquid-filled containers. Aqueducts present a distinctive case, as the capacity of their contained water to function effectively as a TLD remains uncertain. To address this gap, the present study investigates the generation mechanisms of sloshing loads under non-resonant cases through a two-dimensional (2D) computational fluid dynamics (CFD) model developed in ANSYS Fluent.… More >

  • Open Access

    ARTICLE

    Study on Flame Shape and Induced Wind Velocity in Inclined Tunnel Fires with One Portal Sealed

    Shengzhong Zhao1, Daiyan Chen1, Han Zhang1,2,*, Junhao Yu1, Lin Xu1, Zhaoyi Zhuang1, Fei Wang1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1907-1932, 2025, DOI:10.32604/fhmt.2025.071910 - 31 December 2025

    Abstract A sealed portal could significantly alter the flame shape and smoke flow characteristics in inclined tunnel fires. In inclined tunnels, two typical sealing conditions could be defined, namely the upper portal sealed and the lower portal sealed. In this study, the effects of tunnel slope on flame shape, flame length, along with smoke mass flow rate and induced velocity at the tunnel portal, are numerically investigated. The results show that, in all scenarios, flames initially rise vertically but tilt toward the sealed portal during the quasi-steady stage, with the largest tilt angle observed in tunnels… More >

  • Open Access

    ARTICLE

    Who I am shapes how I learn: A mixed methods study exploring the role of work identity and psychological needs in learning engagement

    Ling Li1,#, Ninghui Xu1,#, Wenjing Wang2,*, Jianfen Ying1,*

    Journal of Psychology in Africa, Vol.35, No.6, pp. 833-842, 2025, DOI:10.32604/jpa.2025.071557 - 30 December 2025

    Abstract This study explores the role of teachers’ professional identity (TPI) on employee learning engagement (LE), with mediation by basic needs satisfaction (BNS). Participants were 255 Chinese pre-service teachers (191 females = 74.9%, 16 freshmen = 6.2%, 135 sophomores = 52.9%, 35 juniors = 12.5%, 72 seniors = 28.2%). They completed surveys on the “QuestionStar” online survey platform and 12 of the teachers completed interviews for sharing their personal insights. The results of Structural Equation Modeling (SEM) indicated that teachers’ professional identity significantly predicted both learning engagement and basic needs satisfaction, with basic needs satisfaction partially More >

  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part I—First-Order Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2673-2700, 2025, DOI:10.32604/fdmp.2025.069719 - 01 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have attracted significant research interest; however, overall progress has been limited due to insufficient understanding of the mechanisms governing sloshing-induced loads. In particular, it remains unclear whether the water in aqueducts—common water-diversion structures in many countries—can serve as an effective TLD. This study investigates the generation mechanisms of sloshing loads during the first-order transverse resonance of water in a U-shaped aqueduct using a two-dimensional (2D) numerical model. The results reveal that, at the equilibrium position, the free surface difference between the left and right walls, the horizontal force… More >

  • Open Access

    ARTICLE

    MHD Convective Flow of CNT/Water-Nanofluid in a 3D Cavity Incorporating Hot Cross-Shaped Obstacle

    Faiza Benabdallah1, Kaouther Ghachem1, Walid Hassen2, Haythem Baya2, Hind Albalawi3, Lioua Kolsi4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1839-1861, 2025, DOI:10.32604/cmes.2025.071678 - 26 November 2025

    Abstract Current developments in magnetohydrodynamic (MHD) convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems, particularly through the use of carbon nanotube (CNT)–based fluids that offer exceptional thermal conductivity. Despite extensive research on MHD natural convection in enclosures, the combined effects of complex obstacle geometries, magnetic fields, and CNT nanofluids in three-dimensional configurations remain insufficiently explored. This research investigates MHD natural convection of carbon nanotube (CNT)-water nanofluid within a three-dimensional cavity. The study considers an inclined cross-shaped hot obstacle, a configuration not extensively explored in previous works. The work aims… More >

  • Open Access

    ARTICLE

    Solid Model Generation and Shape Analysis of Human Crystalline Lens Using 3D Digitization and Scanning Techniques

    José Velázquez, Dolores Ojados, Adrián Semitiel, Francisco Cavas*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1821-1837, 2025, DOI:10.32604/cmes.2025.071131 - 26 November 2025

    Abstract This research establishes a methodological framework for generating geometrically accurate 3D representations of human crystalline lenses through scanning technologies and digital reconstruction. Multiple scanning systems were evaluated to identify optimal approaches for point cloud processing and subsequent development of parameterized solid models, facilitating comprehensive morpho-geometric characterization. Experimental work was performed at the 3D Scanning Laboratory of SEDIC (Industrial Design and Scientific Calculation Service) at the Technical University of Cartagena, employing five distinct scanner types based on structured light, laser, and infrared technologies. Test specimens—including preliminary calibration using a lentil and biological analysis of a human… More >

  • Open Access

    PROCEEDINGS

    Shape-Memory Elastomers for Soft Actuators: Challenges and Opportunities

    Jin Wang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011894

    Abstract Shape-memory elastomers (SMEs) have emerged as promising smart-materials platforms for soft actuators and intelligent structures due to their programmable thermally-induced reversible shape transformations. However, four critical scientific and technological challenges impede their practical engineering implementation. First, the thermodynamic and molecular mechanisms governing their thermomechanical behavior remain incompletely elucidated. Second, achieving large reversible deformations requires retention of molecular orientation during thermal actuation cycles- a persistent challenge given their large strain recovery at the heating temperature. Third, while biological muscles achieve sub-second actuation, current SME systems exhibit response times spanning several seconds, necessitating at least one order More >

  • Open Access

    ARTICLE

    Heat Transfer Analysis of Temperature-Sensitive Ternary Nanofluid in MHD and Porous Media Flow: Influence of Volume Fraction and Shape

    Barkilean Jaismitha1, Jagadeesan Sasikumar2,*, Samad Noeiaghdam3,*, Unai Fernandez-Gamiz4, Thirugnanasambandam Arunkumar1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1529-1554, 2025, DOI:10.32604/fhmt.2025.067869 - 31 October 2025

    Abstract The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel, focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field. This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport. By suspending nanoparticles of diverse shapes-platelets, blades, and spheres in a hybrid base fluid comprising cobalt ferrite, magnesium oxide, and graphene oxide, the study examines the influence of both small and large volume fraction values. The governing equations are converted into a dimensionless form. With More >

  • Open Access

    ARTICLE

    RPMS-DSAUnet: A Segmentation Model for the Pancreas in Abdominal CT Images

    Tiren Huang, Chong Luo, Xu Li*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5847-5865, 2025, DOI:10.32604/cmc.2025.067986 - 23 October 2025

    Abstract Automatic pancreas segmentation in CT scans is crucial for various medical applications including early disease detection, treatment planning and therapeutic evaluation. However, the pancreas’s small size, irregular morphology, and low contrast with surrounding tissues make accurate pancreas segmentation still a challenging task. To address these challenges, we propose a novel RPMS-DSAUnet for accurate automatic pancreas segmentation in abdominal CT images. First, a Residual Pyramid Squeeze Attention module enabling hierarchical multi-resolution feature extraction with dynamic feature weighting and selective feature reinforcement capabilities is integrated into the backbone network, enhancing pancreatic feature extraction and improving localization accuracy.… More >

Displaying 1-10 on page 1 of 330. Per Page