Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (256)
  • Open Access

    ARTICLE

    CONVECTIVE HEAT TRANSFER, FRICTION FACTOR AND THERMAL PERFORMANCE IN A ROUND TUBE EQUIPPED WITH THE MODIFIED V-SHAPED BAFFLE

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-19, 2018, DOI:10.5098/hmt.10.6

    Abstract Convective heat transfer, pressure loss and thermal performance in a heat exchanger tube inserted with the modified V-shaped baffle are investigated numerically. The influences of the flow attack angle (α = 20o , 30o and 45o ), baffle height in term of blockage ratio (b/D = BR = 0.05, 0.10, 0.15, 0.20 and 0.25) and arrangement (The V-tip pointing downstream is called “V-Downstream”, while the V-tip pointing upstream is named “V-Upstream”.) on heat transfer and friction loss are presented for the Reynolds number in range 100 – 1200 (laminar region). The numerical study (finite volume method) is selected to solve… More >

  • Open Access

    ARTICLE

    PERFORMANCE OF THE OPTIMIZED TREE-TYPE CYLINDRICALSHAPED NANOPOROUS FILTERING MEMBRANES WITH 9 OR 10 BRANCH PORES IN EACH PORE TREE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.26

    Abstract The paper analytically studies the performance of the optimized tree-type cylindrical-shaped nanoporous filtering membranes with 9 or 10 branch pores in each pore tree. The optimum ratio of the radius of the trunk pore to the radius of its branch pore was found. The corresponding lowest flow resistances of the membranes were typically calculated respectively for weak, medium and strong liquid-pore wall interactions. For liquid-liquid separations, the optimum radii of the trunk pore in the membranes were calculated according to the weak liquid-pore wall interaction. The capability of the liquidliquid separation of the membranes was also studied. The obtained results… More >

  • Open Access

    ARTICLE

    AN OPTIMIZED TREE-TYPE CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.25

    Abstract A tree-type cylindrical-shaped nanoporous filtering membrane is optimized with two levels of branches and a lot of branch pores. In this membrane, the branch pores are parallel with their trunk pore and their radius More >

  • Open Access

    REVIEW

    Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape

    Zhiyuan Dai, Tian Li*, Weihua Zhang, Jiye Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1461-1489, 2023, DOI:10.32604/cmes.2023.028677

    Abstract The aerodynamic optimization design of high-speed trains (HSTs) is crucial for energy conservation, environmental preservation, operational safety, and speeding up. This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs. First, the study explores the impact of train nose shape parameters on aerodynamic performance. The parameterization methods involved in the aerodynamic multiobjective optimization of HSTs are summarized and classified as shape-based and disturbance-based parameterization methods. Meanwhile, the advantages and limitations of each parameterization method, as well as the applicable scope, are briefly discussed. In addition, the NSGA-II algorithm, particle swarm optimization algorithm, standard… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION FOR INVERSE HEAT CONDUCTION PROBLEM OF SINGLE-LAYER LINING EROSION OF BLAST FURNACE

    Fuyong Sua,*, Rui Songa , Peiwei Nia , Zhi Wenb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-5, 2019, DOI:10.5098/hmt.12.25

    Abstract A mathematical model of the inverse heat transfer problem of blast furnace lining is established in this study. Following the identification of the boundary conditions of the model, the inverse problem via the conjugate gradient method was decomposed into three issues: the direct problem, the sensitivity problem, and the adjoint problem. The feasibility of the model was verified through two types of real inner wall boundary shape functions. The effects of the initial inner wall boundary shape function and the number of measuring points are also investigated. Results showed that the accuracy of the inverse solution is independent of the… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION ANALYSIS OF A NATURAL CONVECTION INSIDE A SINUSOIDAL ENCLOSURE WITH DIFFERENT SHAPES OF CYLINDERS

    Hussein M. Jassim, Farooq H. Ali* , Qusay R. Al-Amir, Hameed K. Hamzah, Salwan Obaid Waheed Khafaji

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.22

    Abstract This study is focused on the entropy generation of laminar natural convection inside a sinusoidal enclosure filled with air (Pr=0.71). The numerical investigation is performed for three shapes of inner cylinders (circle, square, and equilateral triangle) with the same area and different values of the Rayleigh number (103-106). Galerkin Finite Element Approach is utilized to solve the governing equations. The results showed that the entropy generations due to heat transfer, fluid friction and total entropy generation increase with increasing values of Rayleigh number, while the local Bejan number decreases. More >

  • Open Access

    ARTICLE

    ESTIMATION AND VALIDATION OF INTERFACIAL HEAT TRANSFER COEFFICIENT DURING SOLIDIFICATION OF SPHERICAL SHAPED ALUMINUM ALLOY (AL 6061) CASTING USING INVERSE CONTROL VOLUME TECHNIQUE

    L. Anna Gowsalyaa , P.D. Jeyakumarb,*, R. Rajaramanc,†, R. Velrajd

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-7, 2019, DOI:10.5098/hmt.12.21

    Abstract Solidification of casting is a complex phenomenon which requires accurate input to simulate for real time applications. Interfacial heat transfer coefficient (IHTC) is an important input parameter for the simulation process. The IHTC is varying with respect to time during solidification and the exact value is to be given as input for the accurate simulation of the casting process. In this work an attempt is made to estimate the IHTC during solidification of spherical shaped aluminum alloy component with sand mould. The mould surface heat flux and mould surface temperatures are estimated by inverse control volume technique using the temperature… More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER CHARACTERISTICS OF AIR IN SQUARE CHANNEL HEAT EXCHANGER WITH C-SHAPED BAFFLE: A NUMERICAL STUDY

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-18, 2019, DOI:10.5098/hmt.13.23

    Abstract The purpose of the present work is to study flow configuration and heat transfer behavior in a square channel heat exchanger equipped with C-shaped baffle. The influences of flow attack angle and baffle size on flow and heat transfer characteristics are considered for the laminar flow regime with the Reynolds number around 100 – 2000. The numerical study with finite volume method is selected for the present investigation. The SIMPLE algorithms is opted to solve the numerical problem. The numerical results are concluded in terms of flow and heat transfer mechanisms in the tested section. The thermal performance analysis; Nusselt… More >

  • Open Access

    ARTICLE

    Royal Crown Shaped Polarization Insensitive Perfect Metamaterial Absorber for C-, X-, and Ku-Band Applications

    Md. Salah Uddin Afsar1, Mohammad Rashed Iqbal Faruque1,*, Sabirin Abdullah1, Mohammad Tariqul Islam2

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 455-469, 2023, DOI:10.32604/cmc.2023.036655

    Abstract This study proposed a new royal crown-shaped polarisation insensitive double negative triple band microwave range electromagnetic metamaterial absorber (MA). The primary purpose of this study is to utilise the exotic characteristics of this perfect metamaterial absorber (PMA) for microwave wireless communications. The fundamental unit cell of the proposed MA consists of two pentagonal-shaped resonators and two inverse C-shaped metallic components surrounded by a split ring resonator (SRR). The bottom thin copper deposit and upper metallic resonator surface are disjoined by an FR-4 dielectric substrate with 1.6 mm thickness. The CST MW studio, a high-frequency electromagnetic simulator has been deployed for… More >

  • Open Access

    ARTICLE

    La genèse systémique d’empreinte pour une maîtrise de l’observation de la Terre

    Mireille Fargette1 , Maud Loireau2, Najet Raouani3 , Thérèse Libourel4

    Revue Internationale de Géomatique, Vol.31, No.1, pp. 135-197, 2022, DOI:10.3166/RIG31.135-197

    Abstract This work is interested in observation, in scientific knowledge acquired from what is perceived (Link making Sense) from a complex systemic world. The approach leads to proposing the concept of imprint within the interdisciplinary framework “System – Reality – World as perceived – Model” and testing it against data, then to proposing systemic ontology as an approach. This makes it possible to deploy the Link making Shape from the systemic domain to the world as perceived, to analyze and describe the relevant part in the data and to show how the whole of this mostly symbolic work can contribute, with… More >

Displaying 21-30 on page 3 of 256. Per Page