Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    Prediction and Sensitivity Analysis of Foam Concrete Compressive Strength Based on Machine Learning Techniques with Hyperparameter Optimization

    Sen Yang1, Jie Zhong1, Boyu Gan1, Yi Sun1, Changming Bu1, Mingtao Zhang1, Jiehong Li1,*, Yang Yu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2943-2967, 2025, DOI:10.32604/cmes.2025.067282 - 30 September 2025

    Abstract Foam concrete is widely used in engineering due to its lightweight and high porosity. Its compressive strength, a key performance indicator, is influenced by multiple factors, showing nonlinear variation. As compressive strength tests for foam concrete take a long time, a fast and accurate prediction method is needed. In recent years, machine learning has become a powerful tool for predicting the compressive strength of cement-based materials. However, existing studies often use a limited number of input parameters, and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.… More >

  • Open Access

    ARTICLE

    CARE: Comprehensive Artificial Intelligence Techniques for Reliable Autism Evaluation in Pediatric Care

    Jihoon Moon1, Jiyoung Woo2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1383-1425, 2025, DOI:10.32604/cmc.2025.067784 - 29 August 2025

    Abstract Improving early diagnosis of autism spectrum disorder (ASD) in children increasingly relies on predictive models that are reliable and accessible to non-experts. This study aims to develop such models using Python-based tools to improve ASD diagnosis in clinical settings. We performed exploratory data analysis to ensure data quality and identify key patterns in pediatric ASD data. We selected the categorical boosting (CatBoost) algorithm to effectively handle the large number of categorical variables. We used the PyCaret automated machine learning (AutoML) tool to make the models user-friendly for clinicians without extensive machine learning expertise. In addition,… More >

  • Open Access

    ARTICLE

    An IoT-Enabled Hybrid DRL-XAI Framework for Transparent Urban Water Management

    Qamar H. Naith1,*, H. Mancy2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 387-405, 2025, DOI:10.32604/cmes.2025.066917 - 31 July 2025

    Abstract Effective water distribution and transparency are threatened with being outrightly undermined unless the good name of urban infrastructure is maintained. With improved control systems in place to check leakage, variability of pressure, and conscientiousness of energy, issues that previously went unnoticed are now becoming recognized. This paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning (MADRL) with Shapley Additive Explanations (SHAP)-based Explainable AI (XAI) for adaptive and interpretable water resource management. In the methodology, the agents perform decentralized learning of the control policies for the pumps and valves based on the real-time… More >

  • Open Access

    ARTICLE

    Enhanced Wheat Disease Detection Using Deep Learning and Explainable AI Techniques

    Hussam Qushtom, Ahmad Hasasneh*, Sari Masri

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1379-1395, 2025, DOI:10.32604/cmc.2025.061995 - 09 June 2025

    Abstract This study presents an enhanced convolutional neural network (CNN) model integrated with Explainable Artificial Intelligence (XAI) techniques for accurate prediction and interpretation of wheat crop diseases. The aim is to streamline the detection process while offering transparent insights into the model’s decision-making to support effective disease management. To evaluate the model, a dataset was collected from wheat fields in Kotli, Azad Kashmir, Pakistan, and tested across multiple data splits. The proposed model demonstrates improved stability, faster convergence, and higher classification accuracy. The results show significant improvements in prediction accuracy and stability compared to prior works,… More >

  • Open Access

    ARTICLE

    A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP)

    Shuqin Zhang1, Zihao Wang1,*, Xinyu Su2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5781-5809, 2025, DOI:10.32604/cmc.2025.062080 - 19 May 2025

    Abstract The methods of network attacks have become increasingly sophisticated, rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively. In recent years, artificial intelligence has achieved significant progress in the field of network security. However, many challenges and issues remain, particularly regarding the interpretability of deep learning and ensemble learning algorithms. To address the challenge of enhancing the interpretability of network attack prediction models, this paper proposes a method that combines Light Gradient Boosting Machine (LGBM) and SHapley Additive exPlanations (SHAP). LGBM is employed to model anomalous fluctuations in various network indicators,… More >

  • Open Access

    ARTICLE

    Reverse Analysis Method and Process for Improving Malware Detection Based on XAI Model

    Ki-Pyoung Ma1, Dong-Ju Ryu2, Sang-Joon Lee3,*

    CMC-Computers, Materials & Continua, Vol.81, No.3, pp. 4485-4502, 2024, DOI:10.32604/cmc.2024.059116 - 19 December 2024

    Abstract With the advancements in artificial intelligence (AI) technology, attackers are increasingly using sophisticated techniques, including ChatGPT. Endpoint Detection & Response (EDR) is a system that detects and responds to strange activities or security threats occurring on computers or endpoint devices within an organization. Unlike traditional antivirus software, EDR is more about responding to a threat after it has already occurred than blocking it. This study aims to overcome challenges in security control, such as increased log size, emerging security threats, and technical demands faced by control staff. Previous studies have focused on AI detection models,… More >

  • Open Access

    ARTICLE

    Dynamic Forecasting of Traffic Event Duration in Istanbul: A Classification Approach with Real-Time Data Integration

    Mesut Ulu1,*, Yusuf Sait Türkan2, Kenan Mengüç3, Ersin Namlı2, Tarık Küçükdeniz2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2259-2281, 2024, DOI:10.32604/cmc.2024.052323 - 15 August 2024

    Abstract Today, urban traffic, growing populations, and dense transportation networks are contributing to an increase in traffic incidents. These incidents include traffic accidents, vehicle breakdowns, fires, and traffic disputes, resulting in long waiting times, high carbon emissions, and other undesirable situations. It is vital to estimate incident response times quickly and accurately after traffic incidents occur for the success of incident-related planning and response activities. This study presents a model for forecasting the traffic incident duration of traffic events with high precision. The proposed model goes through a 4-stage process using various features to predict the… More >

  • Open Access

    ARTICLE

    Early Detection of Colletotrichum Kahawae Disease in Coffee Cherry Based on Computer Vision Techniques

    Raveena Selvanarayanan1, Surendran Rajendran1,*, Youseef Alotaibi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 759-782, 2024, DOI:10.32604/cmes.2023.044084 - 30 December 2023

    Abstract Colletotrichum kahawae (Coffee Berry Disease) spreads through spores that can be carried by wind, rain, and insects affecting coffee plantations, and causes 80% yield losses and poor-quality coffee beans. The deadly disease is hard to control because wind, rain, and insects carry spores. Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93% accuracy using a random forest method. If the dataset is too small and noisy, the algorithm may not learn data patterns and generate accurate predictions.… More >

  • Open Access

    ARTICLE

    Explainable Artificial Intelligence-Based Model Drift Detection Applicable to Unsupervised Environments

    Yongsoo Lee, Yeeun Lee, Eungyu Lee, Taejin Lee*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1701-1719, 2023, DOI:10.32604/cmc.2023.040235 - 30 August 2023

    Abstract Cybersecurity increasingly relies on machine learning (ML) models to respond to and detect attacks. However, the rapidly changing data environment makes model life-cycle management after deployment essential. Real-time detection of drift signals from various threats is fundamental for effectively managing deployed models. However, detecting drift in unsupervised environments can be challenging. This study introduces a novel approach leveraging Shapley additive explanations (SHAP), a widely recognized explainability technique in ML, to address drift detection in unsupervised settings. The proposed method incorporates a range of plots and statistical techniques to enhance drift detection reliability and introduces a… More >

Displaying 1-10 on page 1 of 10. Per Page