Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    PROCEEDINGS

    Investigation on Spall Fracture in Metallic Material Generated in Laser Shock Peening via Fracture Phase Field Method

    Shuaipeng Qi1, Yongxing Shen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09131

    Abstract The local surface crack has already been the main reason that has great negative influence on the fatigue life and the resistance of foreign object damage of important equipment, such as the blades of aviation engine. Laser shock peening (LSP) is a very effective technology for metallic surface treatment, which has been widely used to overcome the negative influence of local surface crack. However, when LSP is applied to a thin specimen, an undesirable result spall fracture, which is close to the free surface inside the specimen, may occur.
    The spall fracture phenomenon generated in LSP has already been investigated… More >

  • Open Access

    PROCEEDINGS

    Underwater Explosion Cavitation Characteristics of Inclined Wall Near Free Surface

    Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.08928

    Abstract The shock wave and cavitation reloading caused by underwater explosion (UNDEX) could threaten the survivability of naval ships seriously. In this talk, we introduce the local discontinuous Galerkin (LDG) method [1] to solve the wave equation to track the propagation and reflection of the UNDEX shock wave. And the pressure cutoff model is adopted to simulate the cavitation effect caused by the reflection of the shock wave. The present LDG model can accurately calculate the UNDEX shock wave and cavitation loading. The present model is validated by comparing with the total formulation calculated by the ABAQUS software. Using this model,… More >

  • Open Access

    PROCEEDINGS

    Investigating the Self-Force and Evolution of High-Speed Dislocations in Impacted Metals: A Discrete-Continuous Model and Configurational Mechanics Analysis

    Shichao Luo1, Yinan Cui1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010223

    Abstract The responses of metals subjected to super high rates of deformation (> 10!/�), as shocking loading, is an area of active research. At such extreme loading rates, subsonic, transonic, and even supersonic dislocation (compared with the shear wave speed in metals) play a crucial role in plastic deformation. The behavior of high-speed dislocations is much more complex than that of quasi-static dislocations under static loads, as their self-force is history-dependent, and their evolution of density is rate-relevant. However, the fundamental questions regarding the self-force and evolution of high-speed dislocations in impacted materials is largely unknown. To address this gap, this… More >

Displaying 1-10 on page 1 of 3. Per Page