Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY AND VARIABLE THERMAL CONDUCTIVITY ON HYDROMAGNETIC DUSTY FLUID FLOW DUE TO A ROTATING DISK

    Jadav Konch*, G. C. Hazarika

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.39

    Abstract This paper investigates momentum, heat and mass transfer characteristics of a hydromagnetic Newtonian dusty fluid flow due to a rotating disk with radiation and viscous dissipation. The main objective of this paper is to study effects of temperature dependent viscosity and thermal conductivity on flow, temperature and species concentration. Radiation and viscous dissipation effects are also taken into account. Saffman model for dusty fluid is considered for the problem. The partial differential equations governing the flow are converted into ordinary differential equations employing similarity transformations. The resulting highly nonlinear coupled ordinary differential equations are solved numerically using shooting technique with… More >

  • Open Access

    ARTICLE

    AN EFFECT OF CATTANEO CHRISTOV HEAT FLUX MODEL FOR EYRING POWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET

    B. Ahmad*, Z. Iqbal

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-6, 2017, DOI:10.5098/hmt.8.22

    Abstract We examine the behavior of Cattaneo-Christov heat flux model for two-dimensional incompressible flow of Eyring Powell fluid passed over an exponentially stretching sheet. Mathematical formulation is performed by assuming boundary layer approximation. Cattaneo Christov heat flux model is applied to analyze the heat transport phenomenon. Thermal relaxation time is envisaged on the layer induced due to boundary. The governing Partial Differential equations are converted into Ordinary differential equations by the appropriate use of similarity transformation. Shooting approach is used to tackle the obtained boundary layer equations. The effects of obtained similarity parameters are plotted and discussed. Computation results reveal that… More >

  • Open Access

    ARTICLE

    Numerical Study for Magnetohydrodynamic (MHD) Unsteady Maxwell Nanofluid Flow Impinging on Heated Stretching Sheet

    Muhammad Shoaib Arif1,2,*, Muhammad Jhangir2, Yasir Nawaz2, Imran Abbas2, Kamaleldin Abodayeh1, Asad Ejaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.2, pp. 303-325, 2022, DOI:10.32604/cmes.2022.020979

    Abstract The numerous applications of Maxwell Nanofluid Stagnation Point Flow, such as those in production industries, the processing of polymers, compression, power generation, lubrication systems, food manufacturing and air conditioning, among other applications, require further research into the effects of various parameters on flow phenomena. In this paper, a study has been carried out for the heat and mass transfer of Maxwell nanofluid flow over the heated stretching sheet. A mathematical model with constitutive expressions is constructed in partial differential equations (PDEs) through obligatory basic conservation laws. A series of transformations are then used to take the system into an ordinary… More >

  • Open Access

    ABSTRACT

    The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions

    Chein-Shan Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.5, No.2, pp. 55-84, 2008, DOI:10.3970/icces.2008.005.055

    Abstract The present paper provides a Lie-group shooting method for the numerical solutions of second-order nonlinear boundary value problems exhibiting multiple solutions. It aims to find all solutions as easy as possible. The boundary conditions considered are classified into four types, namely the Dirichlet, the first Robin, the second Robin and the Neumann. The two Robin type problems are transformed into a canonical one by using the technique of symmetric extension of the governing equations. The Lie-group shooting method is very effective to search unknown initial condition through a weighting factor r(0,1). Furthermore, the closed-form solutions are derived to calculate the… More >

  • Open Access

    ABSTRACT

    The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems

    Chih-Wen Chang1, Chein-Shan Liu2, Jiang-Ren Chang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.2, pp. 69-80, 2007, DOI:10.3970/icces.2007.003.069

    Abstract By using a quasi-boundary regularization we can formulate a two-point boundary value problem of the backward heat conduction equation. The ill-posed problem is analyzed by using the semi-discretization numerical schemes. Then, the resulting ordinary differential equations in the discretized space are numerically integrated towards the time direction by the Lie-group shooting method to find the unknown initial conditions. The key point is based on the erection of a one-step Lie group element G(T) and the formation of a generalized mid-point Lie group element G(r). Then, by imposing G(T) = G(r) we can seek the missing initial conditions through a minimum… More >

  • Open Access

    ARTICLE

    The Lie-group Shooting Method for Radial Symmetric Solutions of the Yamabe Equation

    S. Abbasbandy1,2, R.A. Van Gorder3, M. Hajiketabi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.104, No.4, pp. 329-351, 2015, DOI:10.3970/cmes.2015.104.329

    Abstract We transform the Yamabe equation on a ball of arbitrary dimension greater than two into a nonlinear singularly boundary value problem on the unit interval [0,1]. Then we apply Lie-group shooting method (LGSM) to search a missing initial condition of slope through a weighting factor r ∈ (0,1). The best r is determined by matching the right-end boundary condition. When the initial slope is available we can apply the group preserving scheme (GPS) to calculate the solution, which is highly accurate. By LGSM we obtain precise radial symmetric solutions of the Yamabe equation. These results are useful in demonstrating the… More >

  • Open Access

    ARTICLE

    A Novel Fictitious Time Integration Method for Solving the Discretized Inverse Sturm-Liouville Problems, For Specified Eigenvalues

    Chein-Shan Liu1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.3, pp. 261-286, 2008, DOI:10.3970/cmes.2008.036.261

    Abstract The inverse Sturm-Liouville problem finds its applications in the identification of mechanical properties and/or geometrical configurations of a vibrating continuous medium; however, this problem is hard to solve, either theoretically or numerically. Previously, Liu (2008a) has constructed a Lie-group shooting method to determine the eigenvalues, and the corresponding eigenfunctions, for the direct Sturm-Liouville problem. In this study, we are concerned with solving the inverse Sturm-Liouville problem, by developing a Lie-group of SL(2,R) to construct nonlinear algebraic equations (NAEs), when discrete eigenvalues are specified. Our purpose here is to use these NAEs to solve the unknown function in the Sturm-Liouville operator.… More >

  • Open Access

    ARTICLE

    A Lie-Group Shooting Method Estimating Nonlinear Restoring Forces in Mechanical Systems

    Chein-Shan Liu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.35, No.2, pp. 157-180, 2008, DOI:10.3970/cmes.2008.035.157

    Abstract For an inverse vibration problem of nonlinear mechanical system to estimate displacement- and velocity-dependent restoring force, we transform the equation of motion into a parabolic type partial differential equation (PDE). Then by a semi-discretization of the PDE, the inverse vibration problem is formulated as a multi-dimensional two-point boundary value problem with unknown sources, allowing a closed-form estimation through a Lie-group shooting method to construct the restoring force surface over phase plane. Only one set of displacements measured at sampling time points is used in the estimation. The new method does not require to assume a priori the functional form of… More >

  • Open Access

    ARTICLE

    The Lie-Group Shooting Method for Singularly Perturbed Two-Point Boundary Value Problems

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 179-196, 2006, DOI:10.3970/cmes.2006.015.179

    Abstract This paper studies the numerical computations of the second-order singularly perturbed boundary value problems (SPBVPs). In order to depress the singularity we consider a coordinate transformation from the x-domain to the t-domain. The relation between singularity and stiffness is demonstrated, of which the coordinate transformation parameter λ plays a key role to balance these two tendencies. Then we construct a very effective Lie-group shooting method to search the missing initial condition through a weighting factor r ∈ (0,1) in the t-domain formulation. For stabilizing the new method we also introduce two new systems by a translation of the dependent variable.… More >

  • Open Access

    ARTICLE

    Efficient Shooting Methods for the Second-Order Ordinary Differential Equations

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.2, pp. 69-86, 2006, DOI:10.3970/cmes.2006.015.069

    Abstract In this paper we will study the numerical integrations of second order boundary value problems under the imposed conditions at t=0 and t=T in a general setting. We can construct a compact space shooting method for finding the unknown initial conditions. The key point is based on the construction of a one-step Lie group element G(u0,uT) and the establishment of a mid-point Lie group element G(r). Then, by imposing G(u0,uT) = G(r) we can search the missing initial conditions through an iterative solution of the weighting factor r ∈ (0,1). Numerical examples were examined to convince that the new approach… More >

Displaying 1-10 on page 1 of 20. Per Page