Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features

    Siva Sankari Subbiah1, Senthil Kumar Paramasivan2,*, Karmel Arockiasamy3, Saminathan Senthivel4, Muthamilselvan Thangavel2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3829-3844, 2023, DOI:10.32604/iasc.2023.030480 - 17 August 2022

    Abstract Wind speed forecasting is important for wind energy forecasting. In the modern era, the increase in energy demand can be managed effectively by forecasting the wind speed accurately. The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty, the curse of dimensionality, overfitting and non-linearity issues. The curse of dimensionality and overfitting issues are handled by using Boruta feature selection. The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory (Bi-LSTM). In this paper, Bi-LSTM with Boruta feature… More >

  • Open Access

    ARTICLE

    Routing with Cooperative Nodes Using Improved Learning Approaches

    R. Raja1,*, N. Satheesh2, J. Britto Dennis3, C. Raghavendra4

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2857-2874, 2023, DOI:10.32604/iasc.2023.026153 - 17 August 2022

    Abstract In IoT, routing among the cooperative nodes plays an incredible role in fulfilling the network requirements and enhancing system performance. The evaluation of optimal routing and related routing parameters over the deployed network environment is challenging. This research concentrates on modelling a memory-based routing model with Stacked Long Short Term Memory (s − LSTM) and Bi-directional Long Short Term Memory (b − LSTM). It is used to hold the routing information and random routing to attain superior performance. The proposed model is trained based on the searching and detection mechanisms to compute the packet delivery ratio (PDR), end-to-end (E2E) delay, throughput,… More >

  • Open Access

    ARTICLE

    Harnessing LSTM Classifier to Suggest Nutrition Diet for Cancer Patients

    S. Raguvaran1,*, S. Anandamurugan2, A. M. J. Md. Zubair Rahman3

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2171-2187, 2023, DOI:10.32604/iasc.2023.028605 - 19 July 2022

    Abstract A customized nutrition-rich diet plan is of utmost importance for cancer patients to intake healthy and nutritious foods that help them to be strong enough to maintain their body weight and body tissues. Consuming nutrition-rich diet foods will prevent them from the side effects caused before and after treatment thereby minimizing it. This work is proposed here to provide them with an effective diet assessment plan using deep learning-based automated medical diet system. Hence, an Enhanced Long-Short Term Memory (E-LSTM) has been proposed in this paper, especially for cancer patients. This proposed method will be… More >

  • Open Access

    ARTICLE

    Enhanced Long Short Term Memory for Early Alzheimer's Disease Prediction

    M. Vinoth Kumar1,*, M. Prakash2, M. Naresh Kumar3, H. Abdul Shabeer4

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1277-1293, 2023, DOI:10.32604/iasc.2023.025591 - 19 July 2022

    Abstract The most noteworthy neurodegenerative disorder nationwide is apparently the Alzheimer's disease (AD) which ha no proven viable treatment till date and despite the clinical trials showing the potential of preclinical therapy, a sensitive method for evaluating the AD has to be developed yet. Due to the correlations between ocular and brain tissue, the eye (retinal blood vessels) has been investigated for predicting the AD. Hence, en enhanced method named Enhanced Long Short Term Memory (E-LSTM) has been proposed in this work which aims at finding the severity of AD from ocular biomarkers. To find the… More >

  • Open Access

    ARTICLE

    A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks

    G. Nagalalli*, G. Ravi

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 475-490, 2023, DOI:10.32604/iasc.2023.026571 - 06 June 2022

    Abstract Wireless Sensor Network (WSN), which finds as one of the major components of modern electronic and wireless systems. A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing, data processing, and communication. In the field of medical health care, these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network. But the fear of different attacks on health care data typically increases day by day. In a very short period, these attacks may… More >

  • Open Access

    ARTICLE

    Operative duration and short term morbidity and mortality following radical cystectomy with urinary diversion

    Seth L. Teplitsky1, Patrick J. Hensley1, Amber Bettis2, Andrew James1, Andrew M. Harris1,3

    Canadian Journal of Urology, Vol.29, No.2, pp. 11087-11097, 2022

    Abstract Introduction: To elucidate the association between operative duration (OD) and postoperative complications, which has been poorly studied in radical cystectomy. We hypothesize an increase in morbidity in radical cystectomy cases which have a longer OD.
    Materials and methods: Data from the National Surgical Quality Improvement Program (NSQIP) between the years 2012 and 2018 were reviewed for radical cystectomy with ileal conduit urinary diversion or continent diversion. Total operative time was divided into deciles and stratified comparisons were made using univariable and multivariable analysis.
    Results: A total of 11,128 patients were examined. OD by minutes was stratified into the… More >

  • Open Access

    ARTICLE

    Short term reoperation rates after artificial urinary sphincter placement in pediatric patients

    Christopher J. Loftus1, Jennifer Ahn2, Amanda M. Nguyen3, Sarah Holt1, Mark Cain2, Margarett Shnorhavorian2, Paul Merguerian2, Judith C. Hagedorn1

    Canadian Journal of Urology, Vol.29, No.5, pp. 11318-11322, 2022

    Abstract Introduction: Artificial urinary sphincters (AUS) have demonstrated good functional outcomes in pediatric populations. We sought to examine the nationwide short term reoperation rates in pediatric patients after AUS placement.
    Materials and methods: An observational cohort study was designed utilizing claims from the Truven MarketScan Commercial Claims and Encounters database from 2007 to 2018. Patients under 18 years of age undergoing an AUS procedure were identified using CPT and ICD9/10 codes. Reoperations included any removal, replacement, or AUS placement codes which occurred after the initially identified placement code. Follow up time was the amount of time between AUS… More >

  • Open Access

    ARTICLE

    Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model

    Yunlei Zhang1, Ruifeng Cao1, Danhuang Dong2, Sha Peng3,*, Ruoyun Du3, Xiaomin Xu3

    Energy Engineering, Vol.119, No.5, pp. 1829-1841, 2022, DOI:10.32604/ee.2022.020118 - 21 July 2022

    Abstract In the electricity market, fluctuations in real-time prices are unstable, and changes in short-term load are determined by many factors. By studying the timing of charging and discharging, as well as the economic benefits of energy storage in the process of participating in the power market, this paper takes energy storage scheduling as merely one factor affecting short-term power load, which affects short-term load time series along with time-of-use price, holidays, and temperature. A deep learning network is used to predict the short-term load, a convolutional neural network (CNN) is used to extract the features, More >

  • Open Access

    ARTICLE

    Threefold Optimized Forecasting of Electricity Consumption in Higher Education Institutions

    Majida Kazmi1,*, Hashim Raza Khan1,2, Lubaba2, Mohammad Hashir Bin Khalid2, Saad Ahmed Qazi1,2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2351-2370, 2022, DOI:10.32604/cmc.2022.026265 - 16 June 2022

    Abstract Energy management benefits both consumers and utility companies alike. Utility companies remain interested in identifying and reducing energy waste and theft, whereas consumers’ interest remain in lowering their energy expenses. A large supply-demand gap of over 6 GW exists in Pakistan as reported in 2018. Reducing this gap from the supply side is an expensive and complex task. However, efficient energy management and distribution on demand side has potential to reduce this gap economically. Electricity load forecasting models are increasingly used by energy managers in taking real-time tactical decisions to ensure efficient use of resources.… More >

  • Open Access

    ARTICLE

    Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM

    Doaa Sami Khafaga1, Amel Ali Alhussan1,*, El-Sayed M. El-kenawy2,3, Abdelhameed Ibrahim4, Said H. Abd Elkhalik3, Shady Y. El-Mashad5, Abdelaziz A. Abdelhamid6,7

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 865-881, 2022, DOI:10.32604/cmc.2022.028550 - 18 May 2022

    Abstract The design of an antenna requires a careful selection of its parameters to retain the desired performance. However, this task is time-consuming when the traditional approaches are employed, which represents a significant challenge. On the other hand, machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance. In this paper, we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna. The proposed approach is based on employing… More >

Displaying 21-30 on page 3 of 53. Per Page