Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Sensor Fault Detection in Large Sensor Networks using PCA with a Multi-level Search Algorithm

    A. Rama Mohan Rao1, S. Krishna Kumar1, K. Lakshmi1

    Structural Durability & Health Monitoring, Vol.8, No.3, pp. 271-294, 2012, DOI:10.32604/sdhm.2012.008.271

    Abstract Current advancements in structural health monitoring, sensor and sensor network technologies have encouraged using large number of sensor networks in monitoring spatially large civil structures like bridges. Large amount of spatial information obtained from these sensor networks will enhance the reliability in truly assessing the state of the health of the structure. However, if sensors go faulty during operation, the feature extraction techniques embedded into SHM scheme may lead to an erroneous conclusion and often end up with false alarms. Hence it is highly desirable to robustly detect the faulty sensors, isolate and correct the data, if the data at… More >

  • Open Access

    ARTICLE

    Model Studies of Fluid-Structure Interaction Problems

    X.Sheldon Wang1,∗, Ye Yang2, Tao Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 5-34, 2019, DOI:10.32604/cmes.2019.04204

    Abstract In this work, we employ fluid-structure interaction (FSI) systems with immersed flexible structures with or without free surfaces to explore both Singular Value Decomposition (SVD)-based model reduction methods and mode superposition methods. For acoustoelastic FSI systems, we adopt a three-field mixed finite element formulation with displacement, pressure, and vorticity moment unknowns to effectively enforce the irrotationality constraint. We also propose in this paper a new Inf-Sup test based on the lowest non-zero singular value of the coupling matrix for the selection of reliable sets of finite element discretizations for displacement and pressure as well as vorticity moment. Our numerical examples… More >

  • Open Access

    ARTICLE

    A Novel SINS/IUSBL Integration Navigation Strategy for Underwater Vehicles

    Jian Wang1, Tao Zhang1,*, Bonan Jin1, Shaoen Wu2

    Journal of Cyber Security, Vol.1, No.1, pp. 1-10, 2019, DOI:10.32604/jcs.2019.05818

    Abstract This paper presents a novel SINS/IUSBL integration navigation strategy for underwater vehicles. Based on the principle of inverted USBL (IUSBL), a SINS/IUSBL integration navigation system is established, where the USBL device and the SINS are both rigidly mounted onboard the underwater vehicle, and fully developed in-house, the integration navigation system will be able to provide the absolute position of the underwater vehicle with a transponder deployed at a known position beforehand. Furthermore, the state error equation and the measurement equation of SINS/IUSBL integration navigation system are derived, the difference between the position calculated by SINS and the absolute position obtained… More >

  • Open Access

    ARTICLE

    Inverse Green Element Solutions of Heat Conduction Using the Time-Dependent and Logarithmic Fundamental Solutions

    Akpofure E. Taigbenu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.4, pp. 271-289, 2014, DOI:10.3970/cmes.2014.102.271

    Abstract The solutions to inverse heat conduction problems (IHCPs) are provided in this paper by the Green element method (GEM), incorporating the logarithmic fundamental solution of the Laplace operator (Formulation 1) and the timedependent fundamental solution of the diffusion differential operator (Formulation 2). The IHCPs addressed relate to transient problems of the recovery of the temperature, heat flux and heat source in 2-D homogeneous domains. For each formulation, the global coefficient matrix is over-determined and ill-conditioned, requiring a solution strategy that involves the least square method with matrix decomposition by the singular value decomposition (SVD) method, and regularization by the Tikhonov… More >

  • Open Access

    ARTICLE

    Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification

    S. Venkatesha1, R. Rajender2, C. S. Manohar3

    CMES-Computer Modeling in Engineering & Sciences, Vol.37, No.2, pp. 113-152, 2008, DOI:10.3970/cmes.2008.037.113

    Abstract The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions… More >

  • Open Access

    ARTICLE

    The Inverse Problem of Determining Heat Transfer Coefficients by the Meshless Local Petrov-Galerkin Method

    J. Sladek1, V. Sladek1, P.H. Wen2, Y.C. Hon3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.2, pp. 191-218, 2009, DOI:10.3970/cmes.2009.048.191

    Abstract The meshless local Petrov-Galerkin (MLPG) method is used to solve the inverse heat conduction problem of predicting the distribution of the heat transfer coefficient on the boundary of 2-D and axisymmetric bodies. Using this method, nodes are randomly distributed over the numerical solution domain, and surrounding each of these nodes, a circular sub-domain is introduced. By choosing a unit step function as the test function, the local integral equations (LIE) on the boundaries of these sub-domains are derived. To eliminate the time variation in the governing equation, the Laplace transform technique is applied. The local integral equations are nonsingular and… More >

  • Open Access

    ARTICLE

    The Method of Fundamental Solutions for Inverse Problems Associated with the Steady-State Heat Conduction in the Presence of Sources

    Liviu Marin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.30, No.2, pp. 99-122, 2008, DOI:10.3970/cmes.2008.030.099

    Abstract The application of the method of fundamental solutions (MFS) to inverse boundary value problems associated with the steady-state heat conduction in isotropic media in the presence of sources, i.e. the Poisson equation, is investigated in this paper. Based on the approach of Alves and Chen (2005), these problems are solved in two steps, namely by finding first an approximate particular solution of the Poisson equation and then the numerical solution of the resulting inverse boundary value problem for the Laplace equation. The resulting MFS discretised system of equations is ill-conditioned and hence it is solved by employing the singular value… More >

  • Open Access

    ARTICLE

    Stable PDE Solution Methods for Large Multiquadric Shape Parameters

    Arezoo Emdadi1, Edward J. Kansa2, Nicolas Ali Libre1,3, Mohammad Rahimian1, Mohammad Shekarchi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.1, pp. 23-42, 2008, DOI:10.3970/cmes.2008.025.023

    Abstract We present a new method based upon the paper of Volokh and Vilney (2000) that produces highly accurate and stable solutions to very ill-conditioned multiquadric (MQ) radial basis function (RBF) asymmetric collocation methods for partial differential equations (PDEs). We demonstrate that the modified Volokh-Vilney algorithm that we name the improved truncated singular value decomposition (IT-SVD) produces highly accurate and stable numerical solutions for large values of a constant MQ shape parameter, c, that exceeds the critical value of c based upon Gaussian elimination. More >

  • Open Access

    ARTICLE

    A stabilized RBF collocation scheme for Neumann type boundary value problems

    Nicolas Ali Libre1,2, Arezoo Emdadi2, Edward J. Kansa3,4, Mohammad Rahimian2, Mohammad Shekarchi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.24, No.1, pp. 61-80, 2008, DOI:10.3970/cmes.2008.024.061

    Abstract The numerical solution of partial differential equations (PDEs) with Neumann boundary conditions (BCs) resulted from strong form collocation scheme are typically much poorer in accuracy compared to those with pure Dirichlet BCs. In this paper, we show numerically that the reason of the reduced accuracy is that Neumann BC requires the approximation of the spatial derivatives at Neumann boundaries which are significantly less accurate than approximation of main function. Therefore, we utilize boundary treatment schemes that based upon increasing the accuracy of spatial derivatives at boundaries. Increased accuracy of the spatial derivative approximation can be achieved by h-refinement reducing the… More >

  • Open Access

    ARTICLE

    A Meshless Method for the Laplace and Biharmonic Equations Subjected to Noisy Boundary Data

    B. Jin1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 253-262, 2004, DOI:10.3970/cmes.2004.006.253

    Abstract In this paper, we propose a new numerical scheme for the solution of the Laplace and biharmonic equations subjected to noisy boundary data. The equations are discretized by the method of fundamental solutions. Since the resulting matrix equation is highly ill-conditioned, a regularized solution is obtained using the truncated singular value decomposition, with the regularization parameter given by the L-curve method. Numerical experiments show that the method is stable with respect to the noise in the data, highly accurate and computationally very efficient. More >

Displaying 11-20 on page 2 of 21. Per Page