Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    On the Control of the Master Cylinder Hydraulic Pressure for Electro-Hydraulic Brake (EHB) Systems with the Sliding Mode Design Methodology

    Qiping Chen1, Yu Liu1, Liping Zeng1, Qiang Xiao1, Conghui Zhou1, Sheng Kang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.4, pp. 281-291, 2018, DOI:10.32604/fdmp.2018.03721

    Abstract The brake-by-wire system requirement is promoted owing to the development of green energy vehicle, and the brake pressure control method is needed. A control method for the master cylinder hydraulic pressure based on the sliding mode control approach is proposed to provide the Electro-Hydraulic Brake system (EHB) of electric vehicles with superior system performances. An assessment is carried out about the complex nonlinear characteristics and sensitivity to the external environment of these systems, which include illustrating the working principle of the EHB system, establishing the dynamic models of the key components of the EHB system. The sliding mode control method… More >

  • Open Access

    ARTICLE

    Designing and Optimization of Fuzzy Sliding Mode Controller for Nonlinear Systems

    Zhe Sun1, Yunrui Bi2, Songle Chen1, Bing Hu1, Feng Xiang3, Yawen Ling1, Zhixin Sun1, ∗

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 119-128, 2019, DOI:10.32604/cmc.2019.05274

    Abstract For enhancing the control effectiveness, we firstly design a fuzzy logic based sliding mode controller (FSMC) for nonlinear crane systems. On basis of overhead crane dynamic characteristic, the sliding mode function with regard to trolley position and payload angle. Additionally, in order to eliminate the chattering problem of sliding mode control, the fuzzy logic theory is adopted to soften the control performance. Moreover, aiming at the FSMC parameter setting problem, a DE algorithm based optimization scheme is proposed for enhancing the control performance. Finally, by implementing the computer simulation, the DE based FSMC can effectively tackle the overhead crane sway… More >

  • Open Access

    ARTICLE

    A Bio-Inspired Global Finite Time Tracking Control of Four-Rotor Test Bench System

    Rooh ul Amin1, Irum Inayat2, Li Aijun1, Shahaboddin Shamshirband3,4,*, Timon Rabczuk5

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 365-388, 2018, DOI:10.32604/cmc.2018.03757

    Abstract A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article, to address the attitude tracking control problem of the three degree-of-freedom four-rotor hover system. The proposed controller provides convergence of system states in a pre-determined finite time and estimates the unmodeled dynamics of the four-rotor system. Dynamic model of the four-rotor system is derived with Newton’s force equations. The unknown dynamics of four-rotor systems are estimated using Radial basis function. The bio-inspired global fast terminal sliding mode controller is proposed to provide chattering free finite time error convergence… More >

  • Open Access

    ARTICLE

    A Sliding Mode Control Algorithm for Solving an Ill-posed Positive Linear System

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.39, No.2, pp. 153-178, 2014, DOI:10.3970/cmc.2014.039.153

    Abstract For the numerical solution of an ill-posed positive linear system we combine the methods from invariant manifold theory and sliding mode control theory, developing an affine nonlinear dynamical system with a positive control force and with the residual vector as being a gain vector. This system is proven asymptotically stable to the zero residual vector by using an argument from the Lyapunov stability theory. We find that the system fast tends to the sliding surface and then moves with a sliding mode, such that the resultant sliding mode control algorithm (SMCA) is robust against large noise and stable to find… More >

Displaying 21-30 on page 3 of 24. Per Page