Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    RC2DNet: Real-Time Cable Defect Detection Network Based on Small Object Feature Extraction

    Zilu Liu1,#, Hongjin Zhu2,#,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 681-694, 2025, DOI:10.32604/cmc.2025.064191 - 29 August 2025

    Abstract Real-time detection of surface defects on cables is crucial for ensuring the safe operation of power systems. However, existing methods struggle with small target sizes, complex backgrounds, low-quality image acquisition, and interference from contamination. To address these challenges, this paper proposes the Real-time Cable Defect Detection Network (RC2DNet), which achieves an optimal balance between detection accuracy and computational efficiency. Unlike conventional approaches, RC2DNet introduces a small object feature extraction module that enhances the semantic representation of small targets through feature pyramids, multi-level feature fusion, and an adaptive weighting mechanism. Additionally, a boundary feature enhancement module More >

  • Open Access

    ARTICLE

    Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism

    Xinyu Hu, Defeng Kong*, Xiyang Liu, Junwei Zhang, Daode Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 915-933, 2024, DOI:10.32604/cmc.2023.046376 - 30 January 2024

    Abstract Printed Circuit Board (PCB) surface tiny defect detection is a difficult task in the integrated circuit industry, especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks. To improve the performance of PCB surface tiny defects detection, a PCB tiny defects detection model based on an improved attention residual network (YOLOX-AttResNet) is proposed. First, the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet (Squeeze and Excitation Network) attention… More >

Displaying 1-10 on page 1 of 2. Per Page