Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    Design and Development of an Intelligent Energy Management System for a Smart Grid to Enhance the Power Quality

    Nisha Vasudevan1,*, Vasudevan Venkatraman2, A. Ramkumar1, T. Muthukumar3, A. Sheela4, M. Vetrivel5, R. J. Vijaya Saraswathi6, F. T. Josh7

    Energy Engineering, Vol.120, No.8, pp. 1747-1761, 2023, DOI:10.32604/ee.2023.027821

    Abstract MigroGrid (MG) has emerged to resolve the growing demand for energy. But because of its inconsistent output, it can result in various power quality (PQ) issues. PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources. Similarly, the employment of nonlinear loads will introduce harmonics into the system and, as a result, cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system. Thus, this research focuses on power quality enhancement in the MG using… More >

  • Open Access

    ARTICLE

    Artificial Neural Network-Based Development of an Efficient Energy Management Strategy for Office Building

    Payal Soni, J. Subhashini*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 1225-1242, 2023, DOI:10.32604/iasc.2023.038155

    Abstract In the current context, a smart grid has replaced the conventional grid through intelligent energy management, integration of renewable energy sources (RES) and two-way communication infrastructures from power generation to distribution. Energy management from the distribution side is a critical problem for balancing load demand. A unique energy management strategy (EMS) is being developed for office building equipment. That includes renewable energy integration, automation, and control based on the Artificial Neural Network (ANN) system using Matlab Simulink. This strategy reduces electric power consumption and balances the load demand of the traditional grid. This strategy is More >

  • Open Access

    ARTICLE

    A Distributed Power Trading Scheme Based on Blockchain and Artificial Intelligence in Smart Grids

    Yue Yu1, Junhua Wu1,*, Guangshun Li1, Wangang Wang2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 583-598, 2023, DOI:10.32604/iasc.2023.037875

    Abstract As an emerging hot technology, smart grids (SGs) are being employed in many fields, such as smart homes and smart cities. Moreover, the application of artificial intelligence (AI) in SGs has promoted the development of the power industry. However, as users’ demands for electricity increase, traditional centralized power trading is unable to well meet the user demands and an increasing number of small distributed generators are being employed in trading activities. This not only leads to numerous security risks for the trading data but also has a negative impact on the cost of power generation,… More >

  • Open Access

    REVIEW

    Technologies Behind the Smart Grid and Internet of Things: A System Survey

    Kuldeep Sharma1, Arun Malik1, Isha Batra1, A. S. M. Sanwar Hosen2, Md Abdul Latif Sarker3, Dong Seog Han4,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5049-5072, 2023, DOI:10.32604/cmc.2023.035638

    Abstract Electric smart grids enable a bidirectional flow of electricity and information among power system assets. For proper monitoring and controlling of power quality, reliability, scalability and flexibility, there is a need for an environmentally friendly system that is transparent, sustainable, cost-saving, energy-efficient, agile and secure. This paper provides an overview of the emerging technologies behind smart grids and the internet of things. The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted More >

  • Open Access

    ARTICLE

    Metaheuristic Optimization with Deep Learning Enabled Smart Grid Stability Prediction

    Afrah Al-Bossly*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6395-6408, 2023, DOI:10.32604/cmc.2023.028433

    Abstract Due to the drastic increase in global population as well as economy, electricity demand becomes considerably high. The recently developed smart grid (SG) technology has the ability to minimize power loss at the time of power distribution. Machine learning (ML) and deep learning (DL) models can be effectually developed for the design of SG stability techniques. This article introduces a new Social Spider Optimization with Deep Learning Enabled Statistical Analysis for Smart Grid Stability (SSODLSA-SGS) prediction model. Primarily, class imbalance data handling process is performed using Synthetic minority oversampling technique (SMOTE) technique. The SSODLSA-SGS model… More >

  • Open Access

    ARTICLE

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

    Zeyu Wu1, Bo Sun1,2, Qiang Feng2,*, Zili Wang1, Junlin Pan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 527-554, 2023, DOI:10.32604/cmes.2023.027124

    Abstract Due to the high inherent uncertainty of renewable energy, probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities. However, the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data. This article proposes a physics-informed artificial intelligence (AI) surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance. The incomplete dataset, built with numerical weather prediction data, historical wind power generation, and weather factors data,… More > Graphic Abstract

    Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities

  • Open Access

    ARTICLE

    Network Intrusion Detection in Internet of Blended Environment Using Ensemble of Heterogeneous Autoencoders (E-HAE)

    Lelisa Adeba Jilcha1, Deuk-Hun Kim2, Julian Jang-Jaccard3, Jin Kwak4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3261-3284, 2023, DOI:10.32604/csse.2023.037615

    Abstract Contemporary attackers, mainly motivated by financial gain, consistently devise sophisticated penetration techniques to access important information or data. The growing use of Internet of Things (IoT) technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation, as it facilitates multiple new attack vectors to emerge effortlessly. As such, existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems. To address this problem, we designed a blended threat detection approach, considering the possible impact and dimensionality of new attack surfaces… More >

  • Open Access

    ARTICLE

    Anomaly Detection and Classification in Streaming PMU Data in Smart Grids

    A. L. Amutha1, R. Annie Uthra1,*, J. Preetha Roselyn2, R. Golda Brunet3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3387-3401, 2023, DOI:10.32604/csse.2023.029904

    Abstract The invention of Phasor Measurement Units (PMUs) produce synchronized phasor measurements with high resolution real time monitoring and control of power system in smart grids that make possible. PMUs are used in transmitting data to Phasor Data Concentrators (PDC) placed in control centers for monitoring purpose. A primary concern of system operators in control centers is maintaining safe and efficient operation of the power grid. This can be achieved by continuous monitoring of the PMU data that contains both normal and abnormal data. The normal data indicates the normal behavior of the grid whereas the… More >

  • Open Access

    ARTICLE

    Optimal Management of Energy Storage Systems for Peak Shaving in a Smart Grid

    Firas M. Makahleh1, Ayman Amer2, Ahmad A. Manasrah1, Hani Attar2, Ahmed A. A. Solyman3, Mehrdad Ahmadi Kamarposhti4,*, Phatiphat Thounthong5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3317-3337, 2023, DOI:10.32604/cmc.2023.035690

    Abstract In this paper, the installation of energy storage systems (EES) and their role in grid peak load shaving in two echelons, their distribution and generation are investigated. First, the optimal placement and capacity of the energy storage is taken into consideration, then, the charge-discharge strategy for this equipment is determined. Here, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to calculate the minimum and maximum load in the network with the presence of energy storage systems. The energy storage systems were utilized in a distribution system with the aid of a peak load More >

  • Open Access

    ARTICLE

    Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems

    Firas Abedi1, Hayder M. A. Ghanimi2, Mohammed A. M. Sadeeq3, Ahmed Alkhayyat4,*, Zahraa H. Kareem5, Sarmad Nozad Mahmood6, Ali Hashim Abbas7, Ali S. Abosinnee8, Waleed Khaild Al-Azzawi9, Mustafa Musa Jaber10,11, Mohammed Dauwed12

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3359-3374, 2023, DOI:10.32604/cmc.2023.034221

    Abstract Recent economic growth and development have considerably raised energy consumption over the globe. Electric load prediction approaches become essential for effective planning, decision-making, and contract evaluation of the power systems. In order to achieve effective forecasting outcomes with minimum computation time, this study develops an improved whale optimization with deep learning enabled load prediction (IWO-DLELP) scheme for energy storage systems (ESS) in smart grid platform. The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS. The proposed IWO-DLELP model initially undergoes pre-processing in two More >

Displaying 11-20 on page 2 of 61. Per Page