Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Numerical Investigation of Snow Prevention in the Bogie Region of High-Speed Trains with Active Blowing under Crosswind Conditions

    Yao Zhang1, Hong Lan1,3, Jiye Zhang1,*, Lu Cai2, Yuzhe Ma1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2789-2808, 2024, DOI:10.32604/fdmp.2024.055418 - 23 December 2024

    Abstract In this study, the unsteady Reynolds-averaged Navier–Stokes algorithm coupled with the Discrete Phase Model (DPM) was used to study the accumulation of snow in the bogie region of a high-speed train under crosswind conditions. Moreover, the impact of active blowing schemes on the airflow around the bogie and the dynamics and deposition of snow particles were also assessed. According to the results: in the crosswind environment, active blowing changes the flow field in the bogie area, reducing the flow of air coming from the windward side and bottom of the bogie. The trajectory of snow… More >

  • Open Access

    ARTICLE

    Numerical Simulations of Snow Accumulation in the Bogie Region of a Train Considering Snow Particle Rotation

    Hong Lan1,3, Jiye Zhang1,*, Yao Zhang1, Lu Cai2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2337-2352, 2024, DOI:10.32604/fdmp.2024.052609 - 23 September 2024

    Abstract To investigate the influence of snow particle rotational motion on the accumulation of snow in the bogie region of high-speed trains, an Euler‒Lagrange numerical approach is adopted. The study examines the effects of snow particle diameter and train speed on the ensuing dynamics. It is shown that considering snow particle rotational motion causes significant deviation in the particle trajectories with respect to non-rotating particles. Such a deviation increases with larger snow particle diameters and higher train speeds. The snow accumulation on the overall surface of the bogie increases, and the amount of snow on the More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Deposition Characteristics of Snow on the Bogie of a High-Speed Train

    Lu Cai1, Zhen Lou1, Nan Liu2, Chao An2, Jiye Zhang1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 41-53, 2020, DOI:10.32604/fdmp.2020.07731 - 01 February 2020

    Abstract To investigate the deposition distribution of snow particles in the bogie surfaces of a high-speed train, a snow particle deposition model, based on the critical capture velocity and the critical shear velocity, was elaborated. Simulations based on the unsteady Reynolds-Averaged Navier-Stokes (RANS) approach coupled with Discrete Phase Model (DPM) were used to analyze the motion of snow particles. The results show that the cross beam of the bogie frame, the anti-snake damper, the intermediate brake clamps in the rear wheels, the traction rod and the anti-rolling torsion bar are prone to accumulate snow. The accumulation… More >

Displaying 1-10 on page 1 of 3. Per Page